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Abstract
Value and Trade-offs in Learning from Consumer Location Data

by Meghanath M Y

Location data has changed the way we understand human behavior. 76% of
the population in the advanced economies own a smartphone. These per-
centages continue to rocket. The fast penetration of smartphones, combined
with the wide adoption of location services, has produced a vast volume of
behavior-rich mobile consumer location data. This thesis presents three case
studies in which we propose novel methods to discern the value and trade-
offs in learning consumer behavior from location data.

In Chapter 1, we study the privacy-utility trade-off associated with the
collection and sharing of consumer location data. We find that high privacy
risks prevail in the absence of obfuscation on the shared location data. We
propose a novel framework enabling a data collector to balance the privacy-
utility trade-off. We empirically demonstrate the performance of this ap-
proach on smartphone location data of 40,000 consumers collected across
several weeks.

In Chapter 2, we study the explainability and predictive accuracy trade-
off in learning from location data. We present x-PACS, a new sub-space
search learning algorithm that jointly explains and detects anomalous pat-
terns. Explanations are useful in making learning algorithms more transpar-
ent to the data practitioner. Using several real-world data sets, we show the
effectiveness of x-PACS in anomaly explanation over various baselines and
demonstrate its competitive predictive performance.

In Chapter 3, we investigate the value proposition of discerning social de-
terminants of health from location data. We identify individual lifestyles, ac-
cessibility to health care facilities, neighborhood characteristics, and socioe-
conomic factors from location data. We successfully uncover heterogeneous
lifestyles of over 10,000 (anonymous) Baltimore and D.C. residents. Our
framework reveals that an individual’s lifestyle choice is a critical predictor
of future hospitalization. Importantly, regularity, rather than total time spent
at healthy and unhealthy activities, predict future hospitalization. Compari-
son of the proposed learner that jointly represents several social determinants
with various baselines shows its superiority.
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1

Chapter 1

Personalized and Interpretable
Privacy Preservation

1.1 Introduction

1.1.1 Smart Tracking, Targeting, and Privacy

According to the latest Pew Research (Taylor and Silver, 2019), 76% and
45% of the current population in the advanced and emerging economies, re-
spectively, own a smartphone. These percentages continue to rise rapidly.
Among the U.S. smartphone consumers, over 90% use location services such
as Google Maps (Pew, 2016). The fast penetration of smartphones, combined
with the wide adoption of location services, has produced a vast volume
of behavior-rich mobile location data (or location data, trajectory data here-
after). These data represent one of the latest, and most important, informa-
tion sources available to marketers in the evolution of marketing data, from
surveys to online clickstream and social media data (Wedel and Kannan,
2016). It has also opened up $21 billion sales opportunities for advertisers,
ranging from e-commerce retailers sending discount coupons to individuals
in the vicinity of a store, commonly known as geo-fencing, to personal injury
lawyers targeting those in emergency rooms (Luo et al., 2014; Andrews et al.,
2016; Ghose, Li, and Liu, 2018; Kelsey, 2018).

Geo-marketing based on mobile location data is attractive to advertis-
ers for multiple reasons. First, mobile location data are straightforward to
collect, an app permission away, tracked in the background in most mobile
ecosystems, and readily accessible to advertisers.1 Second, mobile location
data are superior to alternative location data. The built-in sensors of mobile
devices can provide continuous tracking of the movement trajectory of an in-
dividual (i.e., a sequence of fine-grained GPS coordinates). Such individual-
level trajectory data are more precise and granular than social media geo-tags
and consumer self check-ins. They are also more representative of the pop-
ulation than the less granular taxi and public transportation location data.
Third, mobile location data offer an extensive profile of a consumer and por-
tray rich contexts of a consumer’s behavior and brand preference, broad
lifestyle, socioeconomic status, and social relationship (Ghose, Li, and Liu,
2018). Such offline data become even more powerful if combined with a con-
sumer’s online footprints, such as click stream data or social media data,

1While both Apple and Android have taken measures to limit the collection of location data, guide-
lines remain ambiguous about the sales of such data to advertisers (Apple, 2014; Verge, 2019).
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2 Chapter 1. Personalized and Interpretable Privacy Preservation

rendering a holistic online-offline consumer profile. Fourth, excellent loca-
tion tracking and targeting across apps simplifies ad attribution of a location-
based ad campaign. Each advertiser has access to a unique device ID associ-
ated with each smartphone, thus benefiting from reduced overhead to stitch
together a consumer’s location data across sessions or apps and enjoying a
holistic view of each consumer when measuring a campaign’s effectiveness
(Apple, 2012). Fifth, geo-marketing by a butler advertiser also benefits con-
sumers (Ghose, 2017), such as allowing consumers to receive enhanced ser-
vices, personalization (Chellappa and Shivendu, 2010), and financial benefits
such as coupons (Luo et al., 2014; Ghose, Li, and Liu, 2018) or lower insur-
ance premiums (Soleymanian, Weinberg, and Zhu, 2019).

Mobile location data not only provide utility to an advertiser whose but-
ler actions further benefit consumers, but also monetization opportunities to
a location data collector who shares the data with the advertiser. Despite
of the existence of diverse sources and varieties of mobile location data, the
backbone of this rapidly growing mobile location data economy is the huge
number of mobile apps. App owners and location data aggregators serve a
two-sided market with consumers on one side and advertisers on the other,
collecting location data to offer better services to consumers and to mone-
tize with advertisers. For example, a recent article by the New York Times
reported that mobile location data collectors accrue half to two cents per con-
sumer per month from advertisers (Valentino-Devries et al., 2018).

Meanwhile this powerful new form of human movement data offers im-
portant utility to an advertiser, and thus benefits to consumers and the data
collector as well, they entail major privacy risks, such as home location in-
ference. “Privacy" is defined as “the quality or state of being apart from
company or observation” in Merriam-Webster. In business contexts, privacy
broadly pertains to the protection of individually identifiable information on-
line or offline, and the adoption and implementation of privacy policies and
regulations. It is a key driver of online trust (Hoffman, Novak, and Peralta,
1999). More than three-quarters of consumers believe that online advertisers
hold more information about them than they are comfortable with; and ap-
proximately half of them believe that websites ignore privacy laws (Dupre
2015). For offline location data, privacy risks are exemplified by identifica-
tions of a consumer’s home address, daily trajectories, and broad lifestyle, as
vividly depicted by two recent New York Times’ articles (Valentino-Devries
et al., 2018; Thompson and Warzel, 2019). These risks are arguably more con-
cerning than those associated with other forms of consumer data, such as an
individual’s media habit or social media content.

The discussion so far calls for any data collector, before sharing location
data with an advertiser, to maintain a crucial trade-off between the utility
to the advertiser and privacy risk to a consumer. This responsibility falls
primarily upon data collectors as they are situated right between advertis-
ers and consumers, and hold vested interests in continuously maintaining
consumers’ trust in order to collect and monetize location data.2 This no-
tion is also consistent with the extant literature across multiple disciplines
on data sharing (Li et al., 2012; Terrovitis, Mamoulis, and Kalnis, 2008; Li

2Cambridge Analytica’s misuse of consumer data exemplifies severe backlash on the data collector,
Facebook, whose privacy practices resulted in a loss of both consumers and advertisers (Pew, 2018).
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and Sarkar, 2009; Chen et al., 2013; Yarovoy et al., 2009; Machanavajjhala,
Gehrke, and Götz, 2009). The unique properties of, and hence challenges
entailed by, the increasingly accessible and important mobile location data
(to be detailed next), nonetheless, call for novel frameworks to accomplish
the risk-utility trade-off (or privacy-utility trade-off hereafter). We thus aim
to develop a personalized, privacy-preserving framework that incorporates
consumer heterogeneity and optimizes a data collector’s risk-utility trade-
off.

1.1.2 Research Agenda and Challenges

As discussed earlier, there are three key entities in our business setting.

1. Consumer: is an individual who owns a smartphone with one or more of
the apps installed that transmit the individual’s location data to the data
collector. Each consumer has the option to opt out of any app’s location
tracking, with some potential downsides of restricted use of certain app
functions, such as maps or local restaurant finders.

2. Advertiser: is a firm that acquires data from a data collector to improve
the targetability of its marketing campaigns. A subset of advertisers, or
even a third party, with access to the location data, might have a stalker
intent (stalker hereafter) to perform malicious activities on the location
data that invade consumer privacy, such as overly aggressive marketing
or ignoring privacy concerns.

3. Data collector: is an app owner that collects consumers’ location data
from its mobile app, or a data aggregator that integrates location data
from multiple apps. The data are collected in real time and may then be
shared with or sold to advertisers interested in targeting the consumers.

In this work, we take a data collector’s perspective and propose a frame-
work for the data collector to balance between protecting consumer privacy
and preserving a butler advertiser’s utility such as POI recommendation
(Muralidhar and Sarathy, 2006). We aim to answer the following essential
questions.

1. Consumer’s privacy risk: What are some of the key privacy risks of mo-
bile location data to a consumer due to an advertiser’s potential stalker
intent? Can these risks be quantified at a consumer level? Since a
data collector has limited purview of how an advertiser could infer a
consumer’s private information from location data, understanding and
quantifying the risks associated with various types of stalker behaviors
(or threats hereafter) is a crucial first step.

2. Advertiser’s utility: What is the value of an obfuscated data set to a butler
advertiser’s utility? Specifically, what types of key behavioral informa-
tion can a butler advertiser extract from the data to service or target
consumers in a mutually beneficial way?

3. Data collector’s trade-off between consumers’ privacy risks and advertiser’s
utility: Is there a reasonable privacy-utility trade-off? If yes, what are
the necessary steps for the data collector to take?
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To accomplish the above, several methodological challenges need to be
overcome. From a methodological standpoint, our research questions broadly
fall under the paradigm of Privacy-Preserving Data Publishing (PPDP) widely
studied in the context of relational databases (Fung et al., 2010). Nonethe-
less, the unique properties of mobile location data, such as high dimension-
ality (due to a large number of locations visited), sparsity (few overlaps of
locations across consumers), and sequentiality (order of locations visited),
pose additional challenges (Chen et al., 2013). For example, traditional k-
anonymity, which ensures an individual’s record is indistinguishable from at
least k − 1 records, and its extensions face the curse of high dimensionality
while dealing with granular, sometimes second-by-second location data (Ag-
garwal, 2005). ε−differential privacy anonymization, which ensures adding
or deleting a single consumer record has no significant impact on analysis
outcomes, and other randomization-based obfuscation techniques (Machanava-
jjhala et al., 2006), fail to preserve the truthfulness of location data, render-
ing obfuscated data less useful for an advertiser’s visual data mining tasks.
More recent local obfuscation techniques (Chen et al., 2013; Terrovitis et al.,
2017) that suppress locations with lower risk-utility trade-off provide a good
privacy-utility balance. However, the obfuscation mechanisms are often com-
plex for a data collector to interpret and apply in practice. For instance, the
(K, C)L privacy framework (Chen et al., 2013) requires multiple parameters
from a data collector, such as the probability thresholds of a privacy threat to
succeed in different types of behaviors. LSUP (Terrovitis et al., 2017) requires
similar input parameters. Given the complex nature of these approaches, un-
derstanding and setting such parameters are non-trivial for a data collector.
Hence, a more interpretable framework is needed to assist a data collector.

Furthermore, the extant approaches do not tie a butler advertiser’s util-
ity to any specific business use case. These approaches, devised mostly from
the Computer Science literature, measure an advertiser’s utility with simply
the number of unique locations or location sequences preserved in the obfus-
cated data (Chen et al., 2013; Terrovitis et al., 2017). These measures are rather
rudimentary and impractical for an advertiser to interpret or link to mone-
tary decision-making. This challenge thus needs to be tackled by tying the
advertiser’s utility to real-world business contexts. We will next overview
the proposed framework that intends to address the above challenges.

1.1.3 Overview of Proposed Framework

We provide a brief overview of the proposed framework that consists of three
main components: quantification of each consumer’s privacy risk, quantifi-
cation of an advertiser’s utility, and obfuscation scheme for a data collector.

Quantification of Consumer’s Privacy Risk. While the proposed frame-
work may accommodate a variety of privacy risks, we illustrate the frame-
work by computing two specific risks of vital concerns to consumers. One is
“sensitive attribute inference”, where a consumer’s sensitive attributes, such
as home address, is being inferred (Li, Shirani-Mehr, and Yang, 2007; Tucker,
2013; Gardete and Bart, 2018; Rafieian and Yoganarasimhan, 2018). And the
other is “re-identification threat”, where all locations visited by a consumer
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1.1. Introduction 5

are being identified based on a subset of the locations (Samarati, 2001; Pel-
lungrini et al., 2018).

Quantification of Advertiser’s Utility. While the utility of a mobile loca-
tion data set to an advertiser is multi-faceted, we demonstrate one specific
utility related to one arguably most popular and essential business goal ex-
amined by the literature – Point-of-Interest (POI hereafter) recommendation
in mobile advertising (Ghose, Li, and Liu, 2018). Reliable predictions of a
consumer’s future locations would enable an advertiser to target the con-
sumer with context relevant contents and lead to higher business revenues
(Ghose, Li, and Liu, 2018). For instance, if a chain restaurant can accurately
predict that a consumer is going to be in the vicinity of one of its outlets, it
may target the consumer with a discount coupon of value to the consumer.
We hence quantify this utility as the accuracy of a similarity-based collab-
orative filtering recommendation model trained on the location data. The
central idea of this recommender is to identify other consumers with simi-
lar historical behaviors in order to infer the focal consumer’s future behavior
(Bobadilla et al., 2011). Note that while focusing on POI recommendation,
our framework can easily accommodate other utility measurements with var-
ious business goals as well.

Obfuscation Scheme for Data Collector. Acknowledging many potential
solutions to the privacy-utility trade-off may emerge, we propose an obfus-
cation scheme grounded on the idea of suppressing a subset of a consumer’s
locations, given the consumer’s specific privacy risk and the frequency, re-
cency, and time that the consumer spent at each location. We achieve this
by introducing consumer-specific parameters that control the number and
identities of the locations suppressed for each consumer. The suppression,
while reducing each consumer’s privacy risk, also adversely impacts an ad-
vertiser’s utility. Hence, we empirically identify the parameters that balance
the privacy-utility trade-off through a structured grid search while leverag-
ing the risk quantification for each consumer.

Obfuscation
scheme

Consumer risk
quantification

(Baseline)

Utility
quantification
(Baseline)

Obfuscated
consumer risk

Obfuscated
utility

A

B

Location Data

Obfuscated
location data

FIGURE 1.1: Overview of the proposed framework

In summary, Figure 1.1 illustrates the proposed framework encompass-
ing the three components discussed above. In Part A, we compute each con-
sumer’s baseline risk and the advertiser’s baseline utility from the original,
unobfuscated mobile location data (i.e., the full sample). These would also
represent the counterfactual case when no privacy protection is performed.
We expect the unobfuscated full sample to yield the maximum utility to the
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6 Chapter 1. Personalized and Interpretable Privacy Preservation

advertiser, yet incur the maximum privacy risk to the consumers. In Part B,
we perform consumer-level obfuscation based on the suppression probabili-
ties of each location computed from each consumer’s baseline risk, measures
of the informativeness of each location, and a grid parameter. We then cal-
culate the mean risk and utility across all consumers from the obfuscated
data. Finally, we repeatedly obfuscate the original data by varying the grid
parameter and recalculate the mean risk and utility on the corresponding ob-
fuscated data to empirically determine the best risk-utility trade-off for the
data collector. We will describe the details in the Methodology section.

As alluded to earlier, while we illustrate the power and value of the pro-
posed framework by examining two key types of privacy risks and one key
advertiser application, the framework is flexible to accommodate other types
of privacy risks, such as location sequence or visit frequency inference, for
which the risk may be quantified either analytically or via machine learning
heuristics (Pellungrini et al., 2018). The framework may accommodate other
types of advertiser use cases as well, for which the utility may be computed
as the predictive accuracy of the specific business application of interest, such
as when a consumer is most likely to convert into a paying customer given
prior trajectories, or how much is an advertiser’s incremental revenue from
geo-marketing. The framework is also applicable to other contexts, for in-
stance, when the data collector conducts geo-marketing for itself or for ad-
vertisers without sharing location data. We will summarize the key findings
next.

1.1.4 Summary of Key Findings

We validate the proposed framework on a unique data set of nearly one mil-
lion mobile locations from over 40,000 individuals in a major mid-Atlantic
metropolitan area in the U.S. over a period of five weeks in 2018. The main
findings are summarized as follows.

First, we find that the absence of an obfuscation scheme, that is, no steps
taken by a data collector to ensure consumer privacy, indeed entails high pri-
vacy risks to consumers. On average, the success probability is 84% for in-
ferring a consumer’s home address and 82% for inferring mobile operating
system3. On average, a consumer’s home address can be predicted within a
radius of 2.5 miles. Moreover, a consumer’s entire location trajectories can be
fully identified with a 49% success by knowing merely two randomly sam-
pled locations visited by the consumer. It is noteworthy that these success
probabilities of various privacy threats are all estimated based on machine
learning heuristics, which require only the consumers’ locations and corre-
sponding timestamps as the inputs, as we will describe later. Hence, any
entities, including advertisers, who have access to the location data could
accomplish the same inferences.

Second, we find great value of the mobile location data to an advertiser.
An advertiser aiming to target a consumers would be able to predict the next
location most likely visited by the consumer with 25% success. This means

3Previous studies have shown a strong relationship between mobile operating system and con-
sumer demographics (eMarketer, 2013).
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that by analyzing the behavioral patterns revealed by the historical trajecto-
ries, for every one out of four customers, the advertiser is able to design a
highly precise geo-targeting strategy.

Finally, a data collector could curtail the potential invasion of consumer
privacy by performing data obfuscation. Using the proposed obfuscation
scheme, where we suppress each consumer’s locations based on the con-
sumer’s privacy risks and frequency, recency, and time spent at each location,
a data collector may choose from multiple options of risk-utility trade-off via
a grid parameter to perform the obfuscation. Moreover, we find that the pro-
posed framework presents a better choice set of risk-utility trade-off when
compared to eight baselines obfuscation schemes of various types, including
the rule based, consumer risk based, and latest suppression techniques such
as Terrovitis et al., 2017. For instance, when the privacy threat is to predict
a consumer’s home address, the proposed obfuscation scheme reduces the
risk by 15%, which represents the maximum decrease when compared to the
baselines, with a minimum decrease of less than 1% in an advertiser’s util-
ity. We will present a more detailed discussion of the empirical findings and
comparisons with the baseline obfuscation schemes in Section 1.5.

1.1.5 Summary of Key Contributions

We propose an interpretable framework built upon the principle of person-
alized data obfuscation for the emerging and increasingly critical mobile lo-
cation data. These data exhibit distinctive properties, such as high dimen-
sionality (resulting from massive numbers of locations), sparsity (with few
overlaps across visited locations), and sequentiality (with temporal ordering
of visited locations), hence imposing unique methodological challenges.

Conceptually, this research demonstrates the importance for any location
data collector to preserve both consumer privacy and advertiser utility on a
two-sided market. It hence presents a systematic framework to accomplish
this privacy-utility balance. It also stands among the first research to demon-
strate the immense business values of the novel mobile location data that
capture granular human movements and are increasingly leveraged by mar-
keters and other entities, such as municipalities (e.g., for smart city planning).
This research simultaneously illustrates the significant privacy risks associ-
ated with these data if no framework were in place to preserve consumer
privacy.

Managerially, this framework tackles three inter-related critical challenges
facing a location data collector: quantification of each consumer’s privacy
risk, quantification of an advertiser’s utility (i.e., value of mobile location
data to an advertiser), and design of an intuitive and interpretable obfusca-
tion scheme for a data collector. The framework requires only a single parsi-
monious input yet offers a data collector multiple, interpretable, and person-
alized options to protect consumer privacy while preserving an advertiser’s
utility, hence the data collector’s overall monetization opportunity.

Methodologically, this framework (1) quantifies the privacy risk at a con-
sumer level, instead of an aggregate or location level; and quantifies each
consumer’s privacy risk by extracting a comprehensive set of features from
the mobile location data, thus accommodating various types of privacy risks
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8 Chapter 1. Personalized and Interpretable Privacy Preservation

and allowing identifications of which features contribute the most to the pri-
vacy risks; (2) measures an advertiser’s utility associated with specific, real-
world business use cases, such as POI recommendation shown to improve
retailers’ incremental revenues (Ghose, Li, and Liu, 2018); (3) proposes an
interpretable obfuscation scheme that requires merely one input from the
data collector and suppresses locations at each consumer level to furnish the
data collector with multiple intuitive options to maintain the privacy-utility
trade-off; (4) demonstrates efficacy by validating the proposed framework
on a massive, real-world mobile location data set and comparing with eight
benchmarks.

Striking a balance between consumer privacy and geo-marketing consti-
tutes part of a broader debate over tracking and targeting on digital plat-
forms. This debate has resulted in actions from both industries and regula-
tory bodies. For instance, Apple, with 44.6% US smartphone market share
(Statista, 2018), introduced limited ad tracking (LAT) in 2016, which allowed
consumers to opt out of tracking indefinitely (Apple, 2016). Following suit,
Android, the second most adopted mobile ecosystem, rendered more con-
trols to each consumer to limit tracking in its latest software update (Verge,
2019). European Union’s General Data Protection Regulation (GDPR Regu-
lation, 2016), effective from May 2018, requires individuals to opt-in (rather
than opt out of) behavioral targeting and to give explicit permission for their
data to be shared across firms.

Balancing the benefit and privacy risk of consumer location data is in-
creasingly becoming a key concern and top priority for firms and regulatory
bodies. Besides strengthening privacy regulations, more research is called
for to develop privacy-friendly data storage, processing, and analysis tech-
nologies (Wedel and Kannan 2016). Against this background, our research
provides empirical evidence and practical solutions to inform the ongoing
debate over mobile location tracking and location-based targeting.

The rest of the manuscript is organized as follows. In Section 3.2, we
review the literatures from various disciplines that are relevant to our re-
search questions. In Section 3.4, we provide details of our business setting
and discuss sampling and summary statistics of the mobile location data un-
der analysis. Section 3.3 describes the details of the proposed framework
(Figure 1.1). In Section 1.5, we discuss the empirical results and advantages
of the proposed framework. We offer the concluding remarks in Section 1.7.

1.2 Literature Review

We will concisely review the most relevant Marketing, Management, Infor-
mation Systems (IS), and Computer Science (CS) literature on consumer pri-
vacy, privacy-preserving methodologies, and location-based mobile adver-
tising.

1.2.1 Literature on Consumer Privacy

The literature, particularly from Marketing, has a historical, and newly re-
vived, interest in consumer privacy. As different forms of consumer data
emerge over time, the literature has examined consumer privacy concerns
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that arise from many business contexts and data forms, such as marketing
research like surveys (Mayer and White Jr, 1969; De Jong, Pieters, and Fox,
2010; Acquisti, John, and Loewenstein, 2012), direct marketing via phones
or emails (Hann et al., 2008; Kumar, Zhang, and Luo, 2014; Goh, Hui, and
Png, 2015), offline retail sales (Schneider et al., 2018), subscription services
and various customer relationship management (CRM) programs (Conitzer,
Taylor, and Wagman, 2012), online personalization services in computers
and mobile devices (Chellappa and Shivendu, 2010), online search and e-
commerce transactions (Bart et al., 2005), online social networks (Adjerid,
Acquisti, and Loewenstein, 2018). Prior studies have also examined pri-
vacy topics related to finance and healthcare, such as crowd-funding (Burtch,
Ghose, and Wattal, 2015), credit transactions, insurance (Garfinkel, Gopal,
and Goes, 2002; Soleymanian, Weinberg, and Zhu, 2019), and healthcare
(Garfinkel, Gopal, and Goes, 2002; Miller and Tucker, 2009; Miller and Tucker,
2017). As advertisers commonly target consumers by leveraging consumers’
private information, the latest research has also investigated online, social
media, and mobile advertising (Goldfarb and Tucker, 2011a; Conitzer, Tay-
lor, and Wagman, 2012; Tucker, 2013; Gardete and Bart, 2018; Goldfarb and
Tucker, 2011c; Rafieian and Yoganarasimhan, 2018; Goldfarb and Tucker,
2011b). Broadly speaking, any circumstances that involve customer databases
would entail privacy concerns and needs for privacy protection (Garfinkel,
Gopal, and Goes, 2002; Martin, Borah, and Palmatier, 2017; Muralidhar and
Sarathy, 2006; Qian and Xie, 2015). As a result, even business-to-business
(B2B) platforms incur privacy concerns and require effective strategies to ad-
dress these concerns (Kalvenes and Basu, 2006). Nonetheless, as massive
volumes of novel mobile location data emerge, which offer unparalleled op-
portunities to examine large populations’ granular lifestyles and generate de-
batably more severe privacy concerns, more research is needed to quantify
consumer privacy risks and devise privacy-preserving strategies.

Marketing research on consumer privacy falls into four main streams:
consumer-, firm-, regulation-, and methodology- focused. Since our work is
method focused, we will concisely review that here. The other three streams
are discussed in the Appendix A.7.

Prior research has developed methodologies for regulatory bodies and
firms to address privacy concerns. These methods fall under two broad cat-
egories: without data obfuscation and with as in our research. Without data
obfuscation, these methods largely involve firms altering consumers’ pri-
vacy perceptions, hence alleviating privacy concerns. Examples include al-
tering the order of survey questions (Acquisti, John, and Loewenstein, 2012),
revealing other consumers’ attitudes towards privacy (Acquisti, John, and
Loewenstein, 2012), altering the labels of privacy-protecting options (Ad-
jerid, Acquisti, and Loewenstein, 2018), offering opt-in/out options (Kumar,
Zhang, and Luo, 2014), granting enhanced privacy controls over, for instance,
personally identifiable information (Tucker, 2013), allowing customers to re-
main anonymous with a cost (Conitzer, Taylor, and Wagman, 2012), or pro-
viding only aggregate instead of granular information (Sandıkçı et al., 2013).
Consumers themselves may also take actions to preserve privacy, such as de-
clining to answer certain survey questions, concealing addresses, or deflect-
ing marketing solicitations (Hann et al., 2008). Globally, governments are
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also providing regulatory protections, such as national do-no-call registries
(Goh, Hui, and Png, 2015) and state genetic privacy laws (Miller and Tucker,
2017). Other methodologies, on the other hand, leverage obfuscation of orig-
inal data or query outputs. The premise is that an entity, data collector in
our setting, would perform data obfuscation to preserve consumer privacy
before releasing the data to a third party, an advertiser for instance, while en-
suring that the data remain usable. We will provide a more thorough survey
of two sub-streams of this research based on the assumptions made when
developing the relevant techniques (Clifton and Tassa, 2013).

1.2.2 Privacy-preserving Methodology I: Syntactic Models

The assumption of syntactic models is that the entity performing the obfus-
cation knows the type of threat that a stalker or malicious entity intends to
perform on the shared data, and accordingly transforms the data to curtail
that specific threat. The seminal work in this area was the concept of k-
anonymity (Samarati and Sweeney, 1998) aimed at columnar data to ensure
that given a column, there would be at least k records that take the same
columnar value. This would ensure that a consumer is protected from a re-
identification threat, that is, his/her record cannot be completely identified
even if a stalker has some background knowledge, usually a subset of the
consumer’s columnar values.

Studies have shown that k-anonymity is NP hard and suffers from the
curse of dimensionality (Meyerson and Williams, 2004). Variations of the
concept of k-anonymity and heuristics to approximate k-anonymity have then
been proposed (Aggarwal et al., 2005). Since k-anonymity primarily focuses
on the re-identification threat, the method is susceptible to sensitive attribute
inference when a stalker aims to only infer a particular column of a con-
sumer rather than completely re-identify all the columnar values. `-diversity
(Machanavajjhala et al., 2006) and confidence bounding (Wang, Fung, and
Philip, 2007) are proposed to address these shortcomings. `-diversity ac-
complishes this by obfuscating data such that sensitive attributes are well
represented for each consumer, while confidence bounding limits a stalker’s
confidence of inferring a sensitive value to a certain threshold. In the context
of mobile location data, the above methodologies are shown to suffer from
the curse of high dimensionality (Aggarwal, 2005), reducing an advertiser’s
utility. To address this, variations of k-anonymity, such as km-anonymity
(Terrovitis, Mamoulis, and Kalnis, 2008) and complete k-anonymity (Bayardo
and Agrawal, 2005), have been developed for high dimensional transaction
data. However, these techniques only address re-identification threats and
are still vulnerable to sensitive attribute inference. Further, while these tech-
niques work well for high dimensional data, they do not explore obfuscation
of temporal information crucial in extracting behavioral information from
location data. Next, we will review some of the recent syntactic models pro-
posed to obfuscate location data.

Extensions of the above traditional heuristics have been proposed to pre-
serve privacy in simulated/synthetic location data (Chen et al., 2013; Ter-
rovitis, Mamoulis, and Kalnis, 2008; Abul, Bonchi, and Nanni, 2008; Yarovoy
et al., 2009), truck/car movements (Abul, Bonchi, and Nanni, 2008; Yarovoy

DocuSign Envelope ID: F8C86E15-F703-4BF7-9D1C-0466EF7A90C2



1.2. Literature Review 11

et al., 2009), or social media check-in data (Terrovitis et al., 2017; Yang, Qu,
and Cudre-Mauroux, 2018). The seminal work by Abul, Bonchi, and Nanni,
2008 proposes (k, δ) anonymity to perform space generalization on location
data. In other words, the trajectories are transformed so that k of them lie in a
cylinder of the radius δ. A variation of k-anonymity is further developed for
moving object databases (MOD) based on the assumption that MODs do not
have a fixed set of quasi-identifiers (QIDs) (Yarovoy et al., 2009). The authors
define the timestamps of the locations as QIDs and propose two obfuscation
techniques based on space generalization. Few recent studies have explored
variants of k and (k, δ) anonymity where the location trajectories are either
distorted (Gao et al., 2014) or distorted and cloaked to a certain granularity
(Huo et al., 2012; Chow and Mokbel, 2011; Hwang, Hsueh, and Chung, 2013).
All these studies aim at protecting consumers from re-identification threats.

More recently, suppression techniques have garnered attention in obfus-
cating location data (Chen et al., 2013; Terrovitis, Mamoulis, and Kalnis,
2008; Terrovitis et al., 2017). For example, the seminal work by Terrovitis,
Mamoulis, and Kalnis, 2008 presents a local suppression obfuscation tech-
nique assuming that a stalker has access to partial consumer trajectories, sim-
ilar to the setting of the re-identification threat in our study. Built on this
work, Terrovitis et al., 2017 further propose global suppression, separately
from local suppression. Providing privacy guarantees against both identity
and attribute linkage threats, Chen et al., 2013 develop (K, C)L privacy frame-
work. The model requires three parameters from a data collector: a stalker’s
success probability thresholds in both types of threats and a parameter cor-
responding to a stalker’s background knowledge. Instead of measuring the
data utility with a rudimentary metric, the number of unique location points
or frequent sequences preserved in the obfuscated data, as in Chen et al.,
2013 and Terrovitis, Mamoulis, and Kalnis, 2008; Terrovitis et al., 2017, our
research captures the data utility by tying it to a popular business objective
of an advertiser – POI recommendation. In specific, we capture a consumer’s
historical preferences to locations and co-visitations over time from their lo-
cation data, measure the utility of the data as the performance of a collabar-
ative filtering and a time-aware POI recommendation technique (Yuan et al.,
2013; Yuan, Cong, and Sun, 2014).

1.2.3 Privacy-preserving Methodology II: Differentially Private Algorithms

This sub-stream of research is based on the concept of ε-differential privacy
(Dwork and Lei, 2009). Differentially private algorithms guarantee that a
stalker would make the same inference from the shared data whether or not
a focal individual is included in the data. Unlike syntactic models, they are
not limited to a specific type of threats, thus presenting a much stronger pri-
vacy notion. The obfuscation performed on the data usually involves pertur-
bation, that is, adding a noise to the data before sharing them (Muralidhar
and Sarathy, 2006). Another related method is data shuffling, which is usu-
ally performed across rows or columns, such as replacing a subset of a con-
sumer’s record with another consumer’s record to minimize privacy risks.
Various studies have leveraged perturbation, data shuffling, or a combina-
tion of them (Qian and Xie, 2015). For instance, Garfinkel, Gopal, and Goes,
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12 Chapter 1. Personalized and Interpretable Privacy Preservation

2002 perturb the answer of a database query to generate the correct answer
probabilistically or deterministically embedded in the range of the perturbed
answers. Muralidhar and Sarathy, 2006 employ data shuffling for confiden-
tial numerical data where the values of the confidential variables are shuf-
fled among observations, while preserving a high level of data utility and
minimizing the risk of disclosure. Schneider et al., 2018 develop a Bayesian
probability model to produce synthetic data. Besides perturbation and data
shuffling, public key encryption, digital certificate, and blinded signatures
are also common privacy-friendly tools (Kalvenes and Basu, 2006). All of the
above methods focus on columnar data.

In the context of location data, while data querying has been studied
(Riboni and Bettini, 2012; Pelekis et al., 2011; Hwang, Hsueh, and Chung,
2013; Guo et al., 2015; Wernke et al., 2014), the literature on data sharing is
sparse. A few techniques have been developed to generate synthetic trajec-
tories from a series of differentially private queries (He et al., 2015; Chen,
Acs, and Castelluccia, 2012). The utility of the data preserved while gen-
erating these trajectories usually involves summary statistics, such as the
number of unique locations or frequent location patterns. Moreover, ow-
ing to the stronger theoretical guarantees to be met, these techniques have
been empirically shown to not preserve the truthfulness of the location data,
hence hindering advertisers’ abilities to perform sophisticated data mining
tasks (Terrovitis et al., 2017). In our research, the consumers have explicitly
opted in to share their location data with the data collector and advertisers
in exchange for personalized offers. So we take the route of syntactic mod-
els that are more likely to result in a higher data utility to an advertiser. We
assume that a data collector has reasonable knowledge about the type of pri-
vacy threats that a consumer could be exposed to. To minimize the privacy
threats, we propose an obfuscation scheme based on suppression that also
ensures sufficient utility of the obfuscated location data to an advertiser.

Our study distinguishes itself from the prior research along several di-
mensions. We detail these differences with closely related works in Table
1.1. Methodologically, we quantify the privacy risk at a consumer level, in-
stead of an aggregate or location level as in the prior literature (Terrovitis,
Mamoulis, and Kalnis, 2008; Terrovitis et al., 2017). We also measure the
utility of the location data in the context of real-world business applications,
such as POI recommendation, instead of using the aggregate or rudimen-
tary metrics from the literature, such as the number of unique locations or
frequent sequences (He et al., 2015). From the standpoint of practical appli-
cability, the proposed framework requires merely one parsimonious input,
the number of locations already known to a stalker (Section 1.4.1). Therefore,
it is intuitive and interpretable to the data collector or any manager. We also
provide a data collector with multiple options of the risk-utility trade-off. Fi-
nally, most prior studies have validated their recommendations only on syn-
thetic data (Chen et al., 2013; Terrovitis, Mamoulis, and Kalnis, 2008; Abul,
Bonchi, and Nanni, 2008; Yarovoy et al., 2009), vehicle movements (Abul,
Bonchi, and Nanni, 2008; Yarovoy et al., 2009), or social media check-ins (Ter-
rovitis et al., 2017; Yang, Qu, and Cudre-Mauroux, 2018) with various data
limitations described earlier, such as accuracy or representativeness. In con-
trast, we validate our proposed framework on granular mobile location data

DocuSign Envelope ID: F8C86E15-F703-4BF7-9D1C-0466EF7A90C2
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Paper Consumer Privacy Threats Advertiser Utility Obfuscation scheme Empirical Data
Consumer

level
quantification?

Consumer
level

obfuscation?

Abul, Bonchi, and Nanni, 2008 (k, δ)- anonymity
Deviation from
true trajectories

Distortion / Cloaking Simulated data 7 7

Yarovoy et al., 2009 (k)- anonymity Information loss Distortion Car trajectories 7 7

Terrovitis, Mamoulis, and Kalnis, 2008 Re-identification threat Information loss Suppression Transaction Data 7 7

Terrovitis et al., 2017 Re-identification threat Frequent sequences Split and suppression Social network trajectories 7 7

Chen et al., 2013
Re-identification threat
Sensitive Attribute threat

Frequent sequences Suppression Simulated Data 7 7

Gao et al., 2014 k- anonymity Information loss Distortion Simulated data 7 3

Xue et al., 2013 Home address leakage Destination prediction Synthesis Taxi trajectories 7 3

Huo et al., 2012 (k, δ) anonymity Information loss Split and distort 155 consumer trajectories 7 7

Pelekis et al., 2011 Sensitive location protection Streaming k-NN queries Distortion and Synthesis Simulated data 7 3

Chow and Mokbel, 2011 k -anonymity
Deviation from
true trajectories

Distortion/ Cloaking NA 7 7

Hwang, Hsueh, and Chung, 2013 r - anonymity
Number of consumers
in a region

Distortion/ Cloaking Taxi trajectories 7 3

Riboni and Bettini, 2012 ε - DP Streaming POIs Distortion/ Cloaking NA 7 3

He et al., 2015 ε - DP Frequent patterns Synthesis Taxi and network trajectories 7 7

Chen, Acs, and Castelluccia, 2012 ε - DP Frequent patterns Synthesis Metro trajectories 7 7

Proposed work

Re-identification threat
Sensitive Attribute threat
Flexibility to incorporate other
estimates of consumer risk

POI prediction
Activity Prediction
Flexibility to incorporate other
estimates of consumer utility.

Suppression 40k consumer trajectories 3 3

TABLE 1.1: Comparison of Proposed Method to Relevant Literature
in Privacy Preserving Location Data Sharing

from a large population over time.

1.2.4 Location-based Mobile Marketing

Finally, our work is related to the research on location-based mobile mar-
keting. Using randomized field experiments, researchers have demonstrated
that mobile advertisements based on the location and time information can
significantly increase consumers’ likelihood of redeeming geo-targeted mo-
bile coupons (Fang et al., 2015; Molitor et al., 2019; Fong, Fang, and Luo,
2015b; Luo et al., 2014). In our framework, we measure the utility of the loca-
tion data to an advertiser by considering a popular business application, POI
recommendation. Identifying the next location most likely visited by a con-
sumer based on his or her prior trajectories is crucial to perform behavioral
targeting. Ghose, Li, and Liu, 2018 design a POI-based mobile recommenda-
tion based on similarities of consumers’ mobile trajectories and demonstrate
that such a strategy can lead to a significant improvement in a retailer’s in-
cremental revenues. Other recent studies have revealed that understanding
consumers’ hyper-context, for example, the crowdedness of their immediate
environment (Andrews et al., 2016), weather (Li et al., 2017), or the compet-
itive choices (Fong, Fang, and Luo, 2015a; Dubé et al., 2017), is also criti-
cal to marketers’ evaluations of the effectiveness of mobile marketing. An-
other group of studies have further examined consumers’ perceptions and
attitudes toward location-based mobile marketing (Bruner and Kumar, 2007;
Xu, 2006). In the next section, we will describe the mobile location data under
analysis.

1.3 Data

We partner with a leading U.S. data collector that aggregates location data
across hundreds of commonly used mobile apps, from news, weather, map,
to fitness. The data cover one-quarter of the U.S. population across Android
and iOS operating systems.
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14 Chapter 1. Personalized and Interpretable Privacy Preservation

FIGURE 1.2: An example of a consumer’s footprints with 732 unique
locations over the five-week sample period

Description Mean (S.D.) Min (Max)

Number of
locations per person

23.47 (50.26) 2 (1104)

Number of unique
locations per person

14.25 (38.12) 2 (963)

Overall duration
(in hours)

272.97 (278.25) 0.05 (759.27)

Duration at each
location (minutes)

27.96 (45.99) 1.6 (359.23)

Distance between
locations (in km)

1.89 (3.89) 0.02 (75.49)

TABLE 1.2: Summary statistics of the location data sample under
analysis

The data sample under analysis covers a major mid-Atlantic metropoli-
tan region in the U.S. Figure 1.2 displays the region’s map (blurred on pur-
pose due to a confidentiality agreement) and an example of a consumer’s
footprints with 732 unique locations visited during our five-week sampling
period between September and October, 2018. The entire sample includes
940,000 locations from 40,012 consumers. Each row of the data corresponds
to a location recorded for a consumer and contains information about

• Consumer ID: a unique identifier of each consumer;

• Platform ID: an identifier of the consumer’s mobile operating system
(Android or iOS);

• Latitude and longitude (i.e., geo-coordinates) of the location visited;

• Timestamp: the beginning time at the location.

• Time spent: The amount of time spent at the location.
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1.4. Methodology 15

We randomly sample 50% of all consumers in the data (20,000 consumers)
and all their location data for training and cross-validating our machine learn-
ing models (Section 1.5 and Appendix A.6). Based on the models and param-
eters trained, we then conduct the focal analysis using the remaining 50% of
the data. Table 1.2 displays the summary statistics of the data. On aver-
age, a consumer visited from 2 to 963 unique locations tracked by the data.
To reduce smartphone battery drainage, data redundancy, and storage cost,
each consumer’s smartphone is pinged frequently, but only recorded a loca-
tion when there is a substantial change in the geo-coordinates. The average
duration at each location is 27.96 minutes. The average overall duration,
measured as the difference of a consumer’s last and first time stamp is 272
hours (≈ 1.6 weeks). And the Euclidean distance between any two consecu-
tively tracked locations is 1.89 km on average after converting the locations’
latitudes and longitudes to the Universal Transverse Mercator (UTM) coor-
dinates.

The literature on privacy-preserving sharing of location data has tested
the methodologies on simulated data (Chen et al., 2013; Terrovitis, Mamoulis,
and Kalnis, 2008; Abul, Bonchi, and Nanni, 2008; Yarovoy et al., 2009), vehi-
cle movements (Abul, Bonchi, and Nanni, 2008; Yarovoy et al., 2009), or so-
cial media check-ins (Terrovitis et al., 2017; Yang, Qu, and Cudre-Mauroux,
2018), also only over a short period, such as 24 hours. We make an initial
effort to develop a privacy-preserving framework for, and validate it on, a
real-world human physical movement data across a large population. Such
data are automatically tracked in real time by mobile devices, often via wifi,
beacons, and GPS etc. multi-technology multilateration with an accuracy ra-
dius of merely 20 meters. They are thus much more precise than cell tower
tracking that often has an accuracy radius of a few kilometers, social media
geo-tags known for its sparsity and inaccuracy, or consumers’ self check-ins
that rely on consumers’ manual labor and willingness to check-in at any loca-
tion. The mobile location data under our study are also more representative
of the general population than taxi or public transportation data, hence much
more valuable to advertisers and other data users. On the other hand, these
data’s massive scale and high dimensionality, in our case nearly one million
mobile location over just five weeks from one metropolitan region, also en-
tail unique challenges as discussed earlier, hence imminent needs to develop
new privacy-preserving frameworks that can address these challenges.

1.4 Methodology

The proposed framework enables a location data collector to share data in
a privacy preserving manner while ensuring sufficient utility to an adver-
tiser from the shared data. Consistent with the premise of syntactic models,
a data collector has some knowledge about the types of potential privacy
threats (Clifton and Tassa, 2013). While the proposed framework accommo-
dates various types of privacy threats, we illustrate two commonly encoun-
tered types - sensitive attribute inference and re-identification threat. We will
introduce the notations first and then formulate the privacy preservation in
the context of the location data.
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16 Chapter 1. Personalized and Interpretable Privacy Preservation

Definition 1 A trajectory Ti of a consumer i is defined as a temporally ordered set
of tuples Ti = {(l1

i , t1
i ), ..., (lni

i , tni
i )}, where lk

i = (xk
i , yk

i ) is a location k visited by
consumer i with geo-coordinates (i.e., a pair of longitude and latitude) xk

i and yk
i ,

tk
i is the corresponding timestamp, and ni is the total number of locations tracked of

consumer i.

Problem Formulation. We frame the problem of preserving privacy in
location data at a consumer level. Let ri denote a consumer i’s privacy risk
associated with trajectory Ti for a specific type of privacy threat, and ui the
advertiser’s utility from leveraging consumer i’s trajectory. A data collector
aims to find a transformation Ti → P(Ti), where P(Ti) is consumer i’s ob-
fuscated trajectory that the data collector shares with an advertiser by mini-
mizing ri while maintaining ui. The transformation is based on suppressing
the locations in Ti given two suppression parameters. One is ~si, the sup-
pression weight corresponding to each unique location in Ti. It is assigned
based on various measures of the informativeness of each location, such as
the consumer’s frequency, recency, and time spent at each location. The more
informative a location is, the more likely it is suppressed. The other is zi, the
suppression score for consumer i, which controls the number of locations in
Ti to be suppressed. It is assigned based on the consumer’s privacy risk. The
higher the risk for consumer i, the more locations are suppressed in Ti. Both
parameters contribute to the final suppression probabilities assigned to each
location in Ti. In Section 1.4.3, we will detail a structured grid search to fine-
tune these two parameters, which do not need to be input by a data collector.
The corresponding risk and utility of the obfuscated trajectory P(Ti; {~si, zi})
are functions of the two suppression parameters,

ri = PR(Ti; {~si, zi})
ui = U(Ti; {~si, zi}),

where PR(.) and U(.) depend on the type of privacy threat and business
objective of the advertiser, respectively.

Overall, for a set of N consumers’ trajectories T = {T1, ..., TN}, the data
collector aims to find a transformation of T, T → P(T; {~si, zi}N

i=1), to produce
the obfuscated trajectories to be shared with the advertiser that minimize the
expected privacy risk E(ri) across all consumers while maintaining the ex-
pected data utility E(ui) to the advertiser. Consistent with our focal research
questions and overview of the three components of the proposed framework
(Fig. 1.1), we further break down the data collector’s problem into three sub-
problems below. The first two pertain to the estimation of ui and ri based on
PR and U, respectively; and the third is to identify the suppression parame-
ters {~si, zi}.
Problem 1 Quantification of Consumer’s Privacy Risk: Given the consumers’
trajectories T and a privacy threatPR, we quantify each consumer’s risk {r1, ..., rN},
where each ri ∈ [0, 1] indicates the stalker’s success rate in inferring the private in-
formation from consumer i’s trajectory Ti.

Problem 2 Quantification of Advertiser’s Utility: Given the consumers’ tra-
jectories T and a business objective U, we quantify each trajectory’s utility to an
advertiser {u1, ..., uN}.
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Problem 3 Obfuscation Scheme for Data Collector: Given consumer trajecto-
ries T and their corresponding risks, for an advertiser’s business objective U, we
identify an obfuscation scheme T → P(T; {~si, zi}N

i=1) to balance the average risk
and utility across consumers.

Next, we will illustrate the quantification of two classes of privacy risks in
Section 1.4.1 and quantification of the data’s utility to an advertiser in one
business application of POI recommendation in Section 1.4.2. Finally, in Sec-
tion 1.4.3, we will propose an obfuscation scheme that provides a balance
between the privacy risks and data utility.

1.4.1 Quantification of Consumer’s Privacy Risk

The first step of the proposed framework is quantifying each consumer’s pri-
vacy risk. To accomplish this, we simulate a stalker’s actions and assign
its success rate in obtaining a consumer’s sensitive information as the con-
sumer’s privacy risk. Privacy threats could range from using simple heuris-
tics, such as querying the consumers’ trajectories, to leveraging more robust
machine learning heuristics to predict consumers’ sensitive attributes (Li,
Shirani-Mehr, and Yang, 2007; Yang, Qu, and Cudre-Mauroux, 2018). In our
framework, we consider both simple and sophisticated heuristics. Specifi-
cally, we will examine two types of the most commonly encountered stalker
threats. The first type is “sensitive attribute inference”, where a stalker could
employ robust machine learning heuristics to infer sensitive information,
such as home address (Yang, Qu, and Cudre-Mauroux, 2018). The second
type is “re-identification threat”, where a stalker aims to infer a consumer’s
complete set of locations Ti, that is, identify consumer i, from the published
trajectories P(T) (Pellungrini et al., 2018). With some background knowl-
edge, such as a subset of a consumer’s locations Ti ∈ Ti, a stalker could query
the published trajectories P(T) to identify a subset of J consumers who have
visited all locations in Ti. A lower J indicates a higher re-identification risk.

To replicate a stalker’s adversarial actions and assess each consumer’s
privacy risks, we extract a comprehensive set of features from the trajecto-
ries – F (T)4 to capture consumer mobility patterns and consumer-location,
consumer-consumer affinities (Gonzalez, Hidalgo, and Barabasi, 2008; Eagle
and Pentland, 2009; Williams et al., 2015; Pappalardo, Rinzivillo, and Simini,
2016; Ashbrook and Starner, 2003; Zheng, Xie, and Ma, 2010; Wang et al.,
2011). These extracted features, as we will see later in Section 1.5.1, will also
help a data collector interpret which features contribute the most to the pri-
vacy risks, gain insights on possible obfuscation schemes, and quantify and
interpret the data utility to an advertiser. A detailed description of these fea-
tures is presented next.

Trajectory Feature Extraction.

To replicate a stalker’s adversarial actions and assess each consumer’s pri-
vacy risks, we extract a comprehensive set of features from the trajectories

4To simplify the notation, we use F (T) to refer to F (P(T). As we will see later in Section 1.4.3,
both P(T) and T are a set of trajectories as defined Def. 1. Hence, any operation (F here) performed
on T is applicable to P(T) as well.
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examined by the literature, F (T)5 (Gonzalez, Hidalgo, and Barabasi, 2008;
Eagle and Pentland, 2009; Williams et al., 2015; Pappalardo, Rinzivillo, and
Simini, 2016; Ashbrook and Starner, 2003; Zheng, Xie, and Ma, 2010; Wang
et al., 2011).

1. Consumer Mobility: This set of features captures a consumer’s aggre-
gate mobility patterns based on the locations visited in Ti, such as the
consumer’s frequency to, time spent at (Pappalardo, Rinzivillo, and Si-
mini, 2016), and distance traveled to a location (Williams et al., 2015).
We also compute other richer mobility features, such as entropy (Ea-
gle and Pentland, 2009) and radius of gyration (Gonzalez, Hidalgo, and
Barabasi, 2008). A detailed description of these features is listed in Table
1.3.

2. Consumer-Location Affinity: Leveraging the literature on learning sig-
nificant locations from predicting movements across trajectories (Ash-
brook and Starner, 2003; Zheng, Xie, and Ma, 2010), we build three ar-
guably most straightforward consumer-location tensors: the frequency
to, time spent at, and total distance traveled from the immediate prior
location to each location by a consumer at a weekly level. Each of
these three tensors is of order three—consumer by unique location by
week. We then extract consumer specific, lower dimensional repre-
sentations by performing a higher order singular value decomposition
(HOSVD) on the three tensors separately (De Lathauwer, De Moor, and
Vandewalle, 2000). HOSVD is typically applied to extract features from
multivariate data with temporal and spatial dimensions similar to ours
(Fanaee-T and Gama, 2015). Since the tensors are populated over the
locations visited by these consumers, the extracted features would ef-
fectively capture the affinity of the consumers to significant locations.

3. Consumer-Consumer Affinity: Prior studies have also predicted con-
sumer network or social links based on trajectories (Wang et al., 2011).
We thus quantify the consumers’ co-location behaviors by building consumer-
consumer affinity tensors based on the locations that the consumers
share at a weekly level. Each tensor would of order three —consumer
by consumer by week. We populate three such tensors with the average
frequency to, total time spent at, and distance traveled to each co-visited
location within a week, respectively. Next, we perform a HOSVD on
each of these three tensors to extract the consumer specific low dimen-
sional representations indicative of the affinity to other consumers. The
incremental benefit of the affinity features is discussed in Appendix A.5.

Stylized Example. We illustrate the above consumer-location and consumer-
consumer affinity features using a stylized example. Consider three con-
sumer trajectories as defined in Definition 1: T1 = {(A, 1), (B, 1), (A, 2), (A, 2)},
T2 = {(C, 1), (A, 1), (A, 1)}, T3 = {(D, 1), (B, 1), (C, 2)}, where A, B, C, D
are location identifiers and the granularity of the timestamps is at a weekly
level. That is, T = {T1, T2, T3} reveals that these three consumers visited four

5To simplify the notation, we use F (T) to refer to F (P(T). As we will see later in Section 1.4.3,
both P(T) and T are a set of trajectories as defined Def. 1. Hence, any operation (F here) performed
on T is applicable to P(T) as well.
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Feature Description

average_locations
Number of locations in Ti
averaged weekly.

average_ulocations
Number of unique locations in Ti
averaged weekly.

average_distance
Distance travelled by a consumer
to visit locations in Ti, averaged weekly.

average_dwell
Time spent at locations in Ti
averaged weekly.

avg_max_distance (Williams et al., 2015)
Average of the maximum distance
travelled by a consumer each week.

freq_rog,
time_rog,
dist_rog (Gonzalez, Hidalgo, and Barabasi, 2008)

Radius of gyrations is the characteristic
distance traveled by an individual.

rogi =
√

1
|Ti | ∑|Ti |

j=1 wij(lij − li
cm)

2

li
cm = 1

|Ti | ∑
j=|Ti |
j=1 lij,

lij are the geographical coordinates
li
cm is the center of mass of the consumer

wij are weights obtained based on
frequency, time & distance w.r.t to lij

freq_entropy,
time_entropy,
dist_entropy (Eagle and Pentland, 2009)

Mobility entropy measures the
predictability of consumer trajectory.

Ei = −∑|Ti |
j=1 pijlog2 pij , pij computed

from wij for time, frequency & distance.

TABLE 1.3: Description of consumer mobility features

unique locations over a period of two weeks. Each of the three consumer-
location tensors discussed above would be of size [3× 4× 2] for the 3 con-
sumers, 4 unique locations, and 2 weeks For instance, the frequency matrix

of the first consumer with T1 is
(

1 1 0 0
2 0 0 0

)
, where the rows and columns

correspond to the 2 weeks and 4 unique locations, respectively, and each en-
try in the matrix captures the number of times that this consumer visited
each of the four locations during that week. Each of the three consumer-
consumer location tensors described above would be of size [3× 3× 2] for
the 3 consumers by 3 consumers by 2 weeks. For instance, the frequency

matrix for the first consumer with T1 would be
(

1 (1+2)
2

(1+1)
2

1 0 0

)
, where the

rows and columns correspond to weeks and the consumer pairs 1-1, 1-2, and
1-3. Each entry in this matrix is the average frequency of the co-visited lo-
cations within each consumer pair. For instance, during week 1, (A, 1) was
co-visited by consumers 1 and 2, and (B, 1) by consumers 1 and 3. The time
and distance tensors are similarly constructed. We then perform a HOSVD
on these tensors separately and use the first five principal components that
capture a majority of the variance. Hence, for each consumer and tensor, we
have five lower dimensional representations that capture the corresponding
consumer-location and consumer-consumer affinities.

Next, we imitate how a stalker would use the extracted features from the
published trajectories to orchestrate privacy threats.
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Sensitive Attribute Inference.

Leveraging the published trajectories P(T) and extracted features, a stalker
could infer various sensitive attributes, thus posing a privacy threat (Li, Shirani-
Mehr, and Yang, 2007). We train a supervised model Mproxy with the ex-
tracted features as a proxy for the stalker’s model M to infer the sensitive
attributes (Yang, Qu, and Cudre-Mauroux, 2018). Each consumer’s risk is
quantified as the certainty of identifying a sensitive attribute from the con-
sumer’s published trajectory using Mproxy. We illustrate the method by in-
ferring two sensitive attributes, home address (discussed in Section 1.5) and
mobile operating system (deferred to Appendix A.8).

Specifically, we enlist Random Forest as Mproxy in light of its flexibility in
handling regression and classification tasks, and its competitive performance
across a wide range of supervised learning algorithms (Breiman, 2001; Liaw,
Wiener, et al., 2002). For each sensitive attribute, we learn a Random Forest
using the extracted features6. The risk is then calculated as the certainty of
Mproxy in identifying the corresponding sensitive attribute, that is, the prob-
ability of correctly identifying the attribute in classification, or negative root
mean square error in regression. We also perform a 0-1 normalization in re-
gression such that ri ∈ [0, 1].

Re-identification Threat.

Adapting the risk notion that a stalker is able to identify a consumer and
associate the consumer with a record in the published data (Samarati, 2001;
Samarati and Sweeney, 1998), we define re-identification threat in the context
of location data. Here, a stalker tries to re-identify all locations visited by a
consumer based on some prior knowledge of an (often small) subset of loca-
tions visited by the consumer, such as employer address from a membership
registration form. Formally, this problem can be defined as follows:

Definition 2 Given the published trajectories P(T) and a subset of consumer i’s
trajectory T̄i ⊆ Ti, the stalker aims to identify Ti from P(T).

Since a data collector does not know consumer i under threat or the sub-
set locations T̄i a-priori, to quantify the consumer’s risk ri, the data collec-
tor would need to account for all (|Ti|

|T̄i|
) possible subsets of Ti, where |Ti| is

the total number of unique locations visited by a consumer i. For each such
subset, the probability of a consumer being identified is 1

J , where J denotes
the number of all consumers among N who have visited all locations in T̄i.
If no such consumer exists other than i, then the probability of identifying
consumer i would be 1 for the subset considered. We quantify a consumer’s
re-identification risk as the maximum of these probabilities over all such sub-
sets. To reduce the computational complexity of estimating re-identification
risk, we employ a speed-up heuristic leveraging a recent study (Pellungrini
et al., 2018). This is discussed in Appendix A.4

6We have also compared Random Forest with a number of tree-based and boosting classification
methods – xGBoost (Chen and Guestrin, 2016), Conditional inference trees (Hothorn, Hornik, and
Zeileis, 2015), Adaboost (Hastie et al., 2009); and found that Random Forest provides the best out-of-
sample performance.
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A Stylized Example. Three consumers’ trajectories over a two-week pe-
riod, T1 = {(A, 1), (B, 1), (C, 2), (C, 2)}, T2 = {(A, 1), (B, 1), (A, 2)}, T3 =
{(A, 1), (B, 1), (C, 2)}, suggest that all three consumers visited the location
subset (A, B), two of them (consumers 1 and 3) visited (B, C), and two (con-
sumers 1 and 3) visited (A, C). Then given each of these location subsets, the
corresponding probabilities of identifying consumer 1 are {1

3 , 1
2 , 1

2}, result-
ing in consumer 1’s re-identification risk as max(1

3 , 1
2 , 1

2) = 1
2 . The overall

intuition behind the re-identification risk is that given a similar number of
unique locations visited across consumers, a person who visits more unique
locations not visited by others would have a higher re-identification risk.

1.4.2 Quantification of Advertiser’s Utility

Having quantified each consumer’s privacy risks associated with the two
commonly encountered privacy threats (our research question 1), we next
examine the utility that an advertiser would derive from the published tra-
jectories (research question 2). The behavior-rich nature of the location data
enables advertisers to derive great insights and perform various targeted
marketing activities to reap monetary benefits. In this work, we consider a
popular business application, POI recommendation (Ashbrook and Starner,
2003). The underlying idea is to leverage the historical consumer preferences
revealed in the trajectories to predict the locations that a consumer is most
likely to visit in the future. This would enable an advertiser to target the
consumer with relevant, contextualized marketing messages (Ghose, Li, and
Liu, 2018). To this end, we quantify an advertiser’s utility by learning a rec-
ommendation model. Intuitively, more accurate POI predictions will render
better targeting and thus a higher utility for the advertiser. Hence, we quan-
tify ui, the utility of consumer i′s trajectory, as the predictive accuracy of the
recommendation model.

Most recommendation models leverage collaborative filtering to identify
other consumers with similar historical preferences to infer the focal con-
sumer’s preference (Bobadilla et al., 2011). This idea is consistent with hu-
man social behavior: people tend to account for their acquaitances’ tastes,
opinions, and experiences when making own decisions. We thus imitate
an advertiser’s use of the location data for POI recommendation and com-
pare a number of recommendation models examined in the literature (Ap-
pendix A.6). We focus the following discussion on the best performing near-
est neighborhood (NN) based learning technique. Simply put, the main idea
of NN is to identify the m consumers most similar to the focal consumer,
namely m neighbors, and utilize their locations to predict the focal consumer’s
future locations. The similarity is computed based on the visited locations
that reveal each consumer’s preference by leveraging the set of features ex-
tracted from the published trajectories described in Section 1.4.1. To find the
m most similar consumers, we compute the cosine similarity between two
consumers’ features F (Ti) and F (Tj):

sim(F (Ti),F (Tj)) =
F (Ti) · F (Tj)

||F (Ti)||||F (Tj)||
(1.1)
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After identifying the m most similar consumers to a consumer i, denoted
as Mi, we aggregate and rank the unique locations visited by Mi based on
a combination of visit frequency and these m consumers’ similarities to con-
sumer i. Specifically, for each consumer j ∈ Mi, location l ∈ Tj, let f l

j denote
the number of times that consumer j visited location l, then the rank of a
location l for consumer j is determined by:

ol
ij =

|Tj|

∑
l=1

f l
j

∑l f l
j
sim(F (Ti),F (Tj)) (1.2)

In the above equation,
f l
j

∑l f l
j

is the normalized visit frequency at a consumer

level for a location. Intuitively, Equation 1.2 ensures that an individual i is
most likely to visit the most frequently visited location of the most similar
consumer. We further aggregate ol

ij across all the consumers who visited the

location l in Mi by computing the mean of ol
ij:

ol
i =

1

∑|Mi|
j=1 1(l ∈ Tj)

|Mi|

∑
j=1

1(l ∈ Tj) · ol
ij (1.3)

where 1(j ∈ Tj) = 1 if consumer j has visited location l and zero otherwise.
The higher the value of ol

i , the more likely that a consumer i visits location
l in the future. The next k locations (ordered by time) most likely visited
by consumer i hence correspond to the top k such ranked locations. The
utility of consumer i’s trajectory Ti to the advertiser is then measured as the
predictive accuracy of the recommendation model for the different values of
k, measured by the widely used information retrieval metrics that assess the
quality of the recommendations: Average Precision at k (AP@k or APk

i ) and
Average Recall at k (AR@k or ARk

i ) (Yang, Qu, and Cudre-Mauroux, 2018).

Specifically, let Li = {l1
i , l2

i , . . . , lk
′

i } be the actual next k′ locations visited by
consumer i and Li = {l1

i , l2
i , ..., lk

i } be the top k locations predicted by the NN
recommendation model as described above. Then APk

i and ARk
i are:

APk
i =

1
|Li ∩ Li|

k

∑
j=1

|L1:j ∩ L1:j|
|L1:j|

(1.4)

ARk
i =

1
|Li ∩ Li|

k

∑
j=1

|L1:j ∩ L1:j|
|Li|

(1.5)

The intuition is that APk
i measures the proportion of the recommended lo-

cations that are relevant, while ARk
i measures the proportion of relevant lo-

cations that are recommended. Then the expected utility of all consumers’
trajectories to the advertiser E(ui) is calculated as MAP@k and MAR@k,
i.e., the mean APk

i and mean ARk
i , respectively, across all consumers. Also,
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the parameter m (number of the most similar neighbors) is selected by per-
forming a five-fold cross-validation aimed at maximizing the accuracy of the
recommendations (details in Section 1.5.2), a technique commonly used in
the statistical learning literature to ensure a good out-of-sample performance
(Friedman, Hastie, and Tibshirani, 2001).

1.4.3 Obfuscation Scheme

The last step in our framework is to address the third research question –
devising an obfuscation scheme for the data collector that would balance
the privacy risks to the consumers and the utility of the published trajec-
tories to the advertiser. As discussed earlier, given the unique properties of
trajectory data, such as high dimensionality, sparsity, and sequentiality, em-
ploying the traditional obfuscation techniques proposed for relational data,
such as k-anonymity (Samarati and Sweeney, 1998), `-diversity (Machanava-
jjhala et al., 2006), and confidence-bounding (Wang, Fung, and Philip, 2007)
would be computationally prohibitive and significantly reduce the utility of
the resulting obfuscated data (Aggarwal, 2005). On the other hand, those
techniques devised specifically for trajectory data are often complex for a
data collector to interpret and apply in practice. For instance, the (K, C)L pri-
vacy framework (Chen et al., 2013) requires multiple parameter inputs from
a data collector, including the threshold of the stalker’s success probability
and the stalker’s background knowledge in each type of threat. LSUP (Ter-
rovitis et al., 2017) requires similar inputs. Given the complex nature of such
heuristics, setting these parameters and interpreting the resulting obfusca-
tions for practical purposes is non-trivial. Moreover, the current techniques
do not provide the flexibility for a data collector to choose among multi-
ple obfuscation schemes. Addressing these critical challenges, we develop
T → P(T, {~si, zi}N

i=1)), a personalized consumer-level suppression technique
that is interpretable to the data collector. It requires no input parameter for
the sensitive attribute inference and merely one input parameter for the re-
identification threat – the number of a consumer’s locations already known
to the stalker |Ti|. Furthermore, the data collector will enjoy the flexibility of
choosing among multiple interpretable obfuscations for each type of privacy
threat.

In our obfuscation scheme, a consumer’s trajectory Ti is suppressed based
on two consumer-specific suppression parameters {~si, zi}. As described ear-
lier, the suppression score zi controls the number of locations to be sup-
pressed in a consumer i’s trajectory Ti, and the suppression weights~si denote
the likelihood for each unique location to be suppressed. A naive approach
to identify {~si, zi} that balance the risk and utility is to search over a random
grid of positive values of ~si and zi. However, this would be computationally
inefficient, contingent on the grid of values chosen, and potentially result-
ing in no parameters that could satisfactorily balance the risk and utility and
hence requires a more sophisticated grid search.

A more structured approach to identify the parameters would be to con-
sider a grid that ensures reduction in consumer’s risk and assesses the cor-
responding reduction in utility to pick a specification that satisfactorily bal-
ances the risk-utility trade-off. Intuitively, more locations suppressed would
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mean lower risks to the consumers and lower utility to the advertiser; and
in the extreme scenario of no trajectories published, both risk and utility
would be zero. Also, to ensure similar risk reduction for a high-risk and a
low-risk consumer, the number of locations suppressed would need to be
proportional to the consumer’s privacy risk ri, that is, zi = ri × p, where
p ∈ [0, 1] is a grid parameter.

While zi ensures that the number of locations suppressed is proportional
to the consumer’s risk ri, to further limit the information available to per-
form a stalker threat, the more informative locations within Ti would need
to be suppressed with higher probabilities. Since the informativeness is re-
lated to the possible features that can be extracted by a stalker from Ti (Sec-
tion 1.4.1), we assign the suppresion weights ~si based on the key features
capturing the informativeness - frequency, recency, or time spent at each lo-
cation. To exemplify, let Li = {l1

i , l2
i , ..., lki

i }, be the unique locations in Ti =
{(l1

i , t1
i ), ..., (lni

i , tni
i )}, ki ≤ ni. Then the weights based on the corresponding

frequencies { f 1
i , f 2

i , ..., f ki
i } are ~si = {

f 1
i

∑
ki
j=1 f j

i

, f 2
i

∑
ki
j=1 f j

i

, ..., f
ki
i

∑
ki
j=1 f j

i

}.

Combining the two parameters {~si, zi} described above, we can calculate
the suppression probability of each unique location in Ti. Then the unique
locations are independently suppressed with Bernoulli trials given the fol-
lowing probabilities:

zi + zi × s1
i , zi + zi × s2

i , ..., zi + zi × ski
i (1.6)

For a value of p, the base suppression probability (zi) ensures that con-
sumers at higher risks would have more locations suppressed. The addi-
tional term (zi × sj

i) ensures that a more informative location j is suppressed
with a higher probability (zi + zi × sj

i). Since each consumer i’s risk ri and
the suppression weights ~si can be computed apriori from the original unob-
fuscated data, the suppression probabilities above depend only on the grid
parameter p. Suppressing the location data to limit a stalker’s ability to in-
vade private information would also adversely affect a butler advertiser’s
utility derived from P(T). For instance, in the extreme scenario when each
consumer’s risk ri = 1 and p is reasonably high, all locations would be sup-
pressed (i.e., complete suppression7: {P(Ti)} = P(T) = ∅), resulting in no
utility to the advertiser, nor threat to consumer privacy. A similar inference
can be made when p = 0 (i.e., no suppression: P(T) = T), resulting in high
data utility and also high privacy risk. Noting these two extreme scenarios,
we empirically determine the suppression parameters {~si, zi} by varying the
grid parameter p to derive the published trajectories P(T) that balance the
risk and utility.

The proposed obfuscation scheme has two main advantages. First, the
structured grid search by varying the grid parameter p provides the data col-
lector with multiple trade-off choices. Second, the identified {~si, zi} provide
the data collector with consumer level interpretability of the obfuscation. By

7Note that si ∈ [0, 1]; and zi ∈ [0, 1] because ri ∈ [0, 1] and p ∈ [0, 1]. Nonetheless, the corresponding
location is suppressed with probability 1 whenever (zi + zi × si) > 1.

DocuSign Envelope ID: F8C86E15-F703-4BF7-9D1C-0466EF7A90C2



1.5. Empirical Study 25

fine-tuning {~si, zi}, our ultimate goal is to understand, quantify, and opti-
mize the trade-off between the data utility (U) and privacy risk (PR) in a
meaningful way.

1.5 Empirical Study

Consistent with the proposed framework (Part A of Figure 1.1), prior to ob-
fuscation, we first compute each consumer i’s baseline risk ri (Section 1.4.1)
and suppression weights ~si (Section 1.4.3) on the unobfuscated data. We also
compute the baseline data utility MAP@k and MAR@k across all consumers
on the unobfuscated data (Section 1.4.2). Then for each p ∈p= {0, 0.1, ..., 1},
we obfuscate each consumer’s trajectory based on the suppression probabil-
ities computed from the above ri, ~si and p (Equation 1.6); and re-compute
the mean risk and utility across all consumers on the corresponding obfus-
cated data to assess the percentage decrease in the mean risk and utility from
the baseline mean risk and baseline utility, respectively (Part B of Figure 1.1).
This repeated process with varied p will offer the data collector multiple op-
tions to balance the risk and utility. We will report the details and key find-
ings below.

1.5.1 Quantification of Consumer’s Privacy Risk

As described above, for each type of threat, we quantify each consumer’s
baseline risk ri and suppression weights~si without obfuscation. Then based
on the suppression probabilities calculated from these ri, ~si, and each p ∈
{0, 0.1, ..., 1}, we perform consumer-level obfuscation. Each p leads to a dif-
ferent set of obfuscated trajectories and hence re-computation of the mean
risk and utility across consumers. To obtain consistent estimates of the mean
risk and utility, we use bootstrapping with 20 trials for each p. In the sen-
sitive attribute threat, we consider two sensitive attributes of home address
and mobile operating system. To train the predictive model, we mimic a
stalker with access to a training sample of known trajectories and sensitive at-
tributes. We split the data into two random samples: 50% training set (Ttrain)
with 20,000 consumers to train the predictive model, and 50% test set (Ttest)
with 20,012 consumers. As described in Section 1.4.1, we use Random Forest
regressor to predict the risk of inferring home location and a Random Forest
classifier to predict mobile operating system and the re-identification risk.
We cross validate the models to avoid over-fitting by tuning model specific
hyper parameters (see Appendix A.6 for more details). Once the model is
trained, we apply it to estimate the risk on Ttest in each privacy threat. In
Figure 1.4, we report the average risk across all consumers in Ttest for each p.
To compute the re-identification risk, we assume the number of locations in
each consumer’s trajectory already known to a stalker is 2, that is, |T̄i| = 2 in
Definition 2, to illustrate our approach.

A data collector can gain a host of insights from the initial step of quantify-
ing consumers’ privacy risks prior to obfuscation, such as which consumers
are at the greatest risk, what is the severity of each privacy risk, which fea-
ture is most informative to a stalker and hence should be suppressed. For
example, Figure 1.3a offers the data collector a visual of the distribution of
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FIGURE 1.3: Personalized Risk Management Insights

the consumers’ risks if a stalker were to infer their operating systems from
the unobfuscated trajectory data. It shows that the majority of the consumers
carry a relatively high risk (≥ 0.75 chance of success for a stalker) of their
sensitive attribute of operating system being inferred if no obfuscation were
performed. Also, the average risk of home address inference is 0.84. By as-
sessing the error of the Random Forest regressor learned to predict the home
address, we find that on average a stalker could successfully identify a con-
sumer’s home address within a radius of 2.5 miles (Appendix A.6). Further,
the average risk of re-identifying an individual’s entire trajectory by know-
ing merely two randomly sampled locations is 0.49, that is, a 49% chance of
success for a stalker. In addition, the data collector can assess the worst cases
associated with the top-risk consumers in each of the above threats.

Despite these paramount privacy risks arising from unobfuscated loca-
tion data, they can be curtailed by a data collector using the proposed frame-
work. For instance, the risk associated with the home address inference could
be reduced by 10% while fully preserving the data utility on the POI@1 per-
formance (Figures 1.4a, 1.4c, p = 0.7). As a follow-up step, by implement-
ing the POI recommendation strategy in the real world, a data collector can
also measure the monetary value of an individual trajectory, and compare
it with the consumer-specific privacy risk to better understand the customer
lifetime value (Berger and Nasr, 1998) and personalize customer relationship
management.

In addition, a data collector may look at the feature importance (discussed
in Appendix 1.4.1) prior to obfuscation. For instance, Figure 1.3b displays the
top five most important features of the Random Forest trained to compute the
consumers’ risks. We observe that the top five features comprise of consumer
mobility patterns and their affinity to various locations. Specifically, average
number of unique locations visited by a consumer (average_ulocations),
mobility entropy measuring the predictability of a consumer’s trajectory (time_entropy,
dist_entropy), average time spent at various locations (average_dwell_freq)
as well as consumer affinity to different locations (cons_loc_1) are identified
as important features in estimating the consumer risk for sensitive attribute
inference. Based on these, a data collector can infer that the temporal in-
formation of the trajectories (time_entropy and average_dwell) contribute
significantly to the model’s predictive performance and consequently to the
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consumer risk of identifying a sensitive attribute. Hence, a possible obfusca-
tion scheme that removes (even partially) the timestamps in the trajectories
would prevent the stalker from constructing the temporal features and po-
tentially reduce the consumers’ risks. Similar insights can be gained by ana-
lyzing the risk scores related to other stalker threats - home address inference
and re-identification threat considered in the work.

1.5.2 Quantification of Advertiser’s Utility

Next, we compute the data utility to a butler advertiser by leveraging a col-
laborative filtering recommendation heuristic, discussed in Section 1.5.2 to
predict each consumer’s future locations. To assess the predictive accuracy,
we use the locations actually visited by each consumer in the fifth week as
the ground truth and train the recommendation model to predict the loca-
tions. The model ranks the locations that a consumer is likely to visit in the
fifth week of the observation period. We compute the average utility for the
advertiser across all consumers, MAP@k and MAR@k, for k = {1, 5, 10} to
illustrate the method’s efficacy, where k is the next k locations. The model can
also be used to compute MAP@k and MAR@k for other values of k. We per-
form 20 trials for each p and report the mean and 95% confidence intervals
of the utility (Figure 1.4). A more detailed explanation of the utility compu-
tation is available in the Appendix A.5.
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1.5.3 Obfuscation Scheme for Data Collector

In Figures 1.4a and 1.4b, we visualize the risk-utility trade-off based on MAP@k.
As described earlier, the locations in each Ti are suppressed based on the sup-
pression probabilities computed from p and {~si, zi}. We will focus on dis-
cussing the results where the suppression weights ~si are computed based on
the frequency to each location, although we have also computed ~si based on
recency and time spent at each location (Appendix 1.6.2). In Figures 1.4a and
1.4b, the X and Y axes display the percentage decrease in the mean risk and
MAP@k from the baseline risk and baseline MAP@k for each p ∈p. We plot
these for k = {1, 5, 10}. Intuitively, the higher the value of X-axis, the more
the decrease in the overall risk and hence better preservation of privacy. On
the other hand, the lower values of Y-axis correspond to a lesser decrease in
the utility of the obfuscated data compared to the original data, suggesting a
similar utility for the advertiser even after obfuscation. A data collector who
aims to trade off between utility and privacy is thus presented with multiple
choices in our framework, with different k and p. Ideally, a good choice for
obfuscation would be the values of p that correspond to a higher value along
the X-axis and a lower value along the Y-axis. In the figures, the horizontal
blue line, with no decrease in data utility from obfuscation indicates these
choices. Similar insights can be drawn from figures 1.4c and 1.4d where we
compare the percentage decreases in MAR@k to the percentage decreases in
the mean risk.

In all graphs in Figure 1.4, we observe that as we increase p, the values
along both axes increase. This is expected since an increase in p, for the same
consumer risk scores, more locations get suppressed, thus more informa-
tion loss to an advertiser’s utility as well as a privacy threat. For a given
percentage decrease in risk, we observe a lesser corresponding percentage
decrease in performance. This can be explained by the framework’s obfus-
cation parameters {~si, zi}N

i=1 which are varied based on the consumer risk
scores that capture the success of a privacy threat. This risk-based obfusca-
tion would penalize and cause more information loss to the stalker’s adver-
sarial intent compared to the utility. The figures also emphasize the proposed
framework’s flexibility to provide a data collector with several interpretable
choices for obfuscation. Further, since our obfuscation scheme works by sup-
pressing a set of location tuples instead of randomization (Yang, Qu, and
Cudre-Mauroux, 2018) or splitting (Terrovitis et al., 2017), this would also
have potential benefits to the server costs incurred by an advertiser in stor-
ing and analyzing the location data.

1.5.4 Model Comparison

We compare the proposed obfuscation scheme with eight different baselines
corresponding to three types of obfuscation approaches – obfuscation rules
derived from timestamps of consumer locations, alternate suppression schemes
based on consumer risk and the latest work in syntactic models LSUP and
GSUP (Terrovitis et al., 2017). In each of the baselines, we are interested in 1)
Percentage decrease in risk for the two types of consumer threats - home ad-
dress risk and re-identification risk (estimated as discussed in Section 1.4.1)
2) Percentage decrease in advertiser’s utility measured as MAP@k, MAR@k,
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from their respective non-obfuscated consumer trajectories. For a specific
privacy threat, a method is considered superior if the percentage decrease in
advertiser’s utility is lesser compared to the percentage decrease in risks. We
omit distortion, cloaking, synthesis based approaches discussed in Section
3.2 and limit our comparison to recent suppression based techniques since
our advertiser’s utility is quantified based on POI prediction which involves
prediction of a location rather than a coarser region.

Obfuscation
rule

% Decrease
Home address

risk

% Decrease
Re-identification

risk

% Decrease
Utility

(MAP@1)

% Decrease
Utility

(MAR@1)

Remove
Sleep hours

2.43 1.41 11.83 12.69

Remove Sleep
and working

hours
10.72 21.49 34.45 23.72

Remove time
stamps

13.45 0 33.16 32.97

TABLE 1.4: Alternative Schemes: Rule-based Obfuscation

Comparison to Rule-based Obfuscations.

We derive a few practical rules for obfuscation based on the timestamps of
the locations in the data. In the absence of a privacy-friendly framework,
a data collector could perform obfuscation by choosing to 1) remove all the
locations during the usual sleeping hours (10 PM - 7 AM) on all days, 2)
remove the locations in sleeping hours and working hours (9 AM - 6 PM)
on weekdays, or 3) remove the timestamps of the locations entirely before
sharing the data. The three time-based rule obfuscations would reduce the
amount of information that can be extracted from the shared location data,
and hence adversely affect the advertiser’s utility. For instance, if the times-
tamps of the location data were to be removed, both the mobility features,
time_entropy, time_rog, average_dwell (from Table 1.3, Section 1.4.1) and
the consumer-consumer, consumer-location affinity features based on time
spent by a consumer at a location cannot be computed.

The decrease in risks for the two threats and decrease in utility for each
of these obfuscations are presented in Table 1.4. As expected, there is a
decrease in both the risk and utility. In the home address inference threat
(Figure 1.4a, p = 0.7, k = 1), we find that a risk to consumer privacy can
be reduced by 15% (maximum decrease when compared to the rule-based
heuristics) with less than 1% decrease in MAP@1 (minimum decrease). A
similar trend is observed in the re-identification threat (Figures 1.4b, 1.4d).
Overall, we find a better choice set for the trade-off justifying a need for a
privacy-friendly framework to assist a data collector to share location data in
a privacy-friendly way.
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FIGURE 1.5: Proposed framework vs risk-based obfuscations -
MAP@1 and MAR@1

Comparison to Risk-based Obfuscations.

We further compare the proposed obfuscation scheme to three other risk-
based suppression baselines. These baselines are devised to show the effi-
cacy of the quantification of each consumer’s risk and personalized suppres-
sion achieved by introducing and identifying consumer-specific parameters
{~si, zi} in our framework.

1. Random - In this baseline, we do not perform suppression of locations
at a consumer level. Instead of hiding location tuples in Ti based on
zi = ri× p and suppression weights~si, we randomly suppress locations
in T. We suppress the same number of location tuples as in the proposed
obfuscation scheme to make it comparable.

2. Mean Risk - Here, we perform a consumer-specific suppression with-
out any variation across consumers. We replace the consumer risk score
ri with the mean r = 1

N ∑i ri and suppress locations using z = r× p and
suppression weights ~si for each Ti as described in Section 1.4.3.

3. Global - In this baseline, we suppress a location tuple globally. That is,
a tuple in any T has the same chance of being suppressed irrespective of
varied risk levels across consumers. This is different from the proposed
obfuscation scheme where a tuple may not be suppressed for a lower
risk consumer but has been suppressed for a higher risk consumer. For
each tuple, we assign the mean of all consumers’ risk scores as the tu-
ple’s risk score, vary p, and perform suppression.
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We empirically compare the proposed obfuscation scheme to the baselines
above and visualize MAP@1 and MAR@1 in Figure 1.5. We observe that, for
a given decrease in risk, the proposed obfuscation has the least decrease in
the utility gain across all three threats. Random baseline, which is an abla-
tion of the proposed obfuscation scheme without the risk quantification step
performs the worst among the alternative models. This justifies a need for
threat quantification either at a consumer level (Mean Risk and proposed ob-
fuscation) or at a location tuple level (Global). A performance better than the
Mean Risk baseline shows that a personalized level of obfuscation for each
consumer is necessary. Finally, a higher utility over the Global baseline em-
phasizes the need for quantifying and suppressing locations at a consumer
level compared to a tuple level.

Comparison to Latest Suppression Models.

Next, we compare the proposed framework to the most recent syntactic mod-
els LSUP and GSUP proposed by Terrovitis et al., 2017. Both models obfus-
cate the location data to reduce the re-identification threat while maintaining
utility. Methodologically, these models differ from the proposed framework
(Section 1.4.3) in two ways. First, in both LSUP and GSUP, the consumer risk
is only quantified for one threat (re-identification), whereas our framework
additionally considers the sensitive attribute inference. Second, a location is
suppressed either globally across all consumers (GSUP) or locally for a subset
of consumers (LSUP). In contrast, our suppression scheme, due to the intro-
duction of the two consumer specific parameters {~si, zi}, suppression may
be performed at a consumer level with varying suppression probabilities as-
signed to each location visited by the consumer. In addition, compared to the
parsimonious input that our proposed framework requires, both models in
consideration require multiple input parameters, such as the number of ad-
versaries , background knowledge of each adversary in , and Pbr that controls
the number of locations suppressed either locally (LSUP) or globally (GSUP).
The higher the value of Pbr, the lower is the number of locations suppressed.
In our comparison, we follow the empirical evaluation framework of the au-
thors to set the number of adversaries , set the background knowledge of
each adversary in , and merely vary Pbr.

In Table 1.58, we present the decrease in the consumer risk from the un-
obfuscated trajectories for the two types of privacy threats - re-identification
and sensitive attribute inference9 and the corresponding measures of adver-
tiser’s utility as MAP@1, MAR@1. To identify the obfuscation scheme that
provides the better/worse trade-off, we compute the slope ( Y

X in Figure 1.4
—% decrease in the utility divided by % decrease in the risk) for different
decreases in the utility (MAP@1) of LSUP and GSUP. We observe that in a

8The authors in Terrovitis et al., 2017 consider four values of Pbr in their work - {0.2, 0.25, 0.33,
0.50} and conclude that for a fixed number of adversaries, a higher data utility occurs at higher Pbr
values (less locations suppressed) while ensuring reduction in re-identification threat. The best value
suggested in the paper was Pbr = 0.5. Our choice of Pbr was guided based on these experiments and
observations.

9Since the considered models do not handle the sensitive attribute inference, we obfuscated the
data to reduce the re-identification threat and use the same obfuscated data to quantify the reduction
in the consumer risk for the two types of attacks.
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Obfuscation
Method

% Decrease
Home address

risk

% Decrease
Re-identification

risk

% Decrease
Utility

(MAP@1)

% Decrease
Utility

(MAR@1)

GSUP

(Pbr = 0.2)
18.12 14.52 7.74 8.31

GSUP

(Pbr = 0.5)
7.25 7.29 4.49 3.42

LSUP

(Pbr = 0.2)
22.16 31.56 5.31 7.12

LSUP

(Pbr = 0.5)
9.15 10.91 -1.65 0.86

TABLE 1.5: LSUP and GSUP comparison. (Green/Red indicate proposed
framework provides a better/worse trade-off)

majority (6 out of 8) of the cases, the proposed framework provides a bet-
ter trade-off (denoted by green color in Table 1.5) compared to both LSUP
and GSUP. This improved trade-off comes with an added benefit that the
proposed framework only requires one input parameter – the number of lo-
cations already known to a stalker in the re-identification threat, as compared
to the great sets of parameters required by LSUP and GSUP.

1.6 Robustness Tests

1.6.1 Alternate Utility Function : Activity Prediction

We study the robustness of our proposed framework with another popular
business application – Human activity prediction. Daily activities like com-
muting, working, eating, etc. can capture contextual information about a
consumer rather than just location. Predicting these activities with a high
accuracy can enable real-time, context-aware marketing campaigns. For ex-
ample, if an advertiser can accurately predict when a consumer is likely go-
ing to a restaurant, based on their current GPS location, they could deliver
a set of recommendations for the nearest restaurant chains with appropriate
marketing messages. Similar to the POI recommendation, we imitate an ad-
vertiser’s use of location data for Human Activity prediction to quantify the
utility. We first transform the location trajectories of each consumer Ti into ac-
tivity trajectories Ai comprising of 14 different activity groups listed in Table
3.1. To map the locations to activities, we leverage Google Places API which
fetches the place type of a location (second column in Table 3.1), which we
then semantically group into the 14 activity groups (first column in Table 3.1),
which capture a consumer’s day-day activities of consumption (restaurant,
unhealthyactivities), leisure (recreation, personalcare, hotel, home, fitness),
shopping (necessityshopping, leisureshopping) and commute (publictrans-
port, owntransport) behavior.

We model the activity sequence of a consumer using a LSTM based archi-
tecture to jointly predict the following.

1. Next k activities of a consumer,
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Activity
group

Place type of location

hospital hospital, doctor
health physiotherapist, pharmacy, dentist, drugstore

ncessityshopping
store, supermarket, convenience_store, home_goods_store,

grocery_or_supermarket, hardware_store
fitness gym

publictransport
transit_station, train_station, bus_station, light_rail_station,

subway_station
owntransport car_wash, car_repair, parking, gas_station, taxi_stand

religious church, mosque, hindu_temple, synagogue

recreation
amusement_park, tourist_attraction, zoo, park, theatre,

sports_stadium, concert, bowling_alley, art_gallery, aquarium,
museum, movie_rental, book_store, library, movie_theater, campground

travel hotel, lodging, rv
personalcare beauty_salon, spa, hair_care

leisureshopping
clothing_store, department_store, shopping_mall, shoe_store,

electronics_store, furniture_store
unhealthyactivities casino, liquor_store, bar, night_club, cigarette

restaurant restaurant, food, meal, bakery, cafe, meal_delivery, meal_takeaway
other locations for which a place type was not identified by Places API

TABLE 1.6: Activity groups

2. Time of the day of each activity (morning, afternoon, evening),

3. Time of week of each activity (Weekend/Weekday)

Architecture

1. Input Layer: The LSTM model takes three input sequences that cap-
tures the state of a consumer, represented as a triplet (a, t, w), where a,
the activity is encoded as a one-hot vector of length 14, t ∈ {Morning,
Afternoon, Evening} the time of the day is encoded as 0/1 to indicate
Weekend/Weekday. The input sequences are concatenated into a vec-
tor of length 18 and are fed into the next layer.

2. LSTM Layer: The encoded input then goes through an LSTM layer
which has a hidden state to store historical information and is carried
forward to subsequent time-steps.

3. Dropout Layer: The output of the LSTM layer is fed through a dropout
layer to prevent the model from over-fitting on the training data by set-
ting the activations of a certain percent of neurons (dropout rate) to zero.

4. Activated Dense Layer: The output of the Dropout layer is fed into a
Dense layer which outputs a vector of length 18, representing the state
triplet (a, t, w). We apply a SoftMax activation over the first 14 elements
and the next three elements separately - representing the probability
assigned to each of the activities and time of the day of the activity.
The last element has a rectified linear unit activation applied on it to
represent the time of the week of the activity.

Training, Model Selection and Hyperparameter tuning

For each consumer, we randomly pick one week of their activities as their test
set. Before training our models, a hold-out validation set, of 1-week worth of
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activities per consumer is randomly separated out from the training dataset.
To prevent overfitting, the models are trained until their performance on the
validation set reaches a maximum. While training, we compute three losses
– Categorical cross entropy for the activity, time of day and binary cross en-
tropy for the time of the week. Since accuracy of activity prediction is more
salient compared to the time of day and time of week, we assign dispropor-
tionate weights (λ ,1-λ,1 - λ) , λ ∈ [0,1] while summing across these losses
and empirically pick the with the best averaged validation accuracy (grid
λ ∈ [0.5, 0.6, 0.7]). In addition to λ, we also tune the number of hidden states
in the LSTM layer (grid: 64, 128, 256) and the drop-out rate (linear grid: 0.05
to 0.4, in increments of 0.05). The models were trained for a maximum of 500
epochs. The model with the best validation accuracy was then picked to be
evaluated on the test set.

Utility Measurement

Similar to Section 1.4.1 (Eq. 4, 5), we compute the APk
i and ARk

i for the three
prediction tasks. The expected utility of all consumers’ trajectories E(ui) is
calculated as the average across the three prediction tasks, across all con-
sumers, and is denoted as MAP@k and MAR@k. These are assessed for
varying p, k and their corresponding decreases in risks for both the sensi-
tive attribute inference and re-identification threat in the figure 1.6.
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FIGURE 1.6: Proposed framework : Alternate Data Utility Function

Similar to Figure 1.4, for a given percentage decrease in risk, we observe a
lesser corresponding percentage decrease in performance emphasizing the
robustness of the proposed obfuscation scheme under time-aware recom-
mendation heuristics.

1.6.2 Suppression based on Recency and Time Spent

In the proposed suppression scheme (Section 1.4.3), we introduce and pro-
vide a structured grid search by varying the grid parameter p to identify the
two consumer specific parameters {~si, zi}. Recall that zi controls the number
of locations to be suppressed for a given consumer trajectory Ti; and within
Ti, we assign weights to each tracked location through ~si to denote the likeli-
hood of a specific location being suppressed. In the Figure 1.4 of our empir-
ical study (Section 1.5), we assign ~si based on the frequency of the location
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visited in Ti. Here, we further augment the empirical study and showcase
the flexibility of the proposed suppression scheme by assigning the ~si based
on the time spent by a consumer at each location in Ti and the recency of the
locations in Ti. For brevity, we only consider the sensitive attribute threat
where a stalker aims to infer the home address of a consumer and visualize
the privacy-utility trade-off in figures 1.7b and 1.7a. Similar to Figure 1.4,
we observe that for a given percentage decrease in the risk, there is a lesser
corresponding percentage decrease in the utility.
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(B) Suppression based on recency

FIGURE 1.7: Proposed framework : Home address inference, sup-
pression by recency and time spent.

1.6.3 Varying Sample Sizes

To test for the robustness of the results discussed in Figure 1.4, we repeat
our empirical exercise on three random samples: 25%, 50% and 75% of the
full 40,000 consumer trajectory data. For brevity and to avoid repetition of
similar plots, the suppression is performed based on the frequency of the
location visited by a consumer (similar to Figure 1.4) for the home address
inference threat. The resulting plots comparing the percentage decreases in
the consumer risk and advertiser utility from the baselines calculated on the
unobfuscated data are visualized in Figures 1.8a, 1.8b, and 1.8c. We note that
even at smaller samples, the slope (i.e., the % decrease in the utility divided
by the % decrease in the risk) at different values of p is similar to that of the
full sample (Figure 1.4a).

1.6.4 Varying Dimensionality

We exhibit the robustness of the proposed framework, by varying the di-
mensionality of the consumer trajectories. For each consumer trajectory, we
perform 25%, 50% and 75% truncations and repeat our empirical exercise.
For brevity, the suppression is performed based on the frequency of the lo-
cation visited by a consumer (similar to Figure 1.4) for the home address
inference threat. The resulting plots comparing the percentage decreases in
the consumer risk and advertiser utility from the baselines calculated on the
unobfuscated data are reported in Figures 1.9a, 1.9b, and 1.9c. We note that
the proposed framework performs reasonably well on sparser dimensions
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FIGURE 1.8: Proposed framework : Home address inference, varying
sample sizes

(25% and 50%) and is comparable to the full sample (Figure 1.4a) when 75%
of consumer trajectories are considered.

0

10

20

30

0 10 20 30
% Decrease in Risk at p

%
 D

ec
re

as
e 

in
 M

A
P

@
k

1

5

10

0.25 0.50 0.75p

(A) 25% of consumer trajecto-
ries

0

10

20

30

0 10 20
% Decrease in Risk at p

%
 D

ec
re

as
e 

in
 M

A
P

@
k

1

5

10

0.25 0.50 0.75p

(B) 50% of consumer trajecto-
ries

0

10

20

30

0 10 20
% Decrease in Risk at p

%
 D

ec
re

as
e 

in
 M

A
P

@
k

1

5

10

0.25 0.50 0.75p

(C) 75% of consumer trajecto-
ries

FIGURE 1.9: Proposed framework : Home address inference, varying
sample sizes

1.7 Conclusion

Smartphone location tracking has created a wide range of opportunities for
data collectors to monetize location data (Valentino-Devries et al., 2018; Thomp-
son and Warzel, 2019). Leveraging the behavior-rich location data for target-
ing is proven to be an effective mobile marketing strategy and to increase
advertisers’ revenues (Ghose, Li, and Liu, 2018). However, these monetary
gains come at the cost of potential invasion of consumer privacy. In this
research, we tackle this important yet under-studied topic from a data col-
lector’s perspective. Specifically, we identify three key challenges facing a
data collector and propose an end-to-end framework to enable a data collec-
tor to monetize and share location data with an advertiser while preserving
consumer privacy.

The existing literature on privacy preservation is unsuited for this new
type of data with distinct characteristics, not interpretable to the data collec-
tor, or not personalized to an individual level. Our research fills this gap.
Specifically, we propose a framework of three components, each addressing
a key challenge facing a data collector. First, we quantify each consumer’s
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risks, exemplified by two common types of stalker behaviors – sensitive at-
tribute inference and re-identification threat. These risks are intuitively mod-
eled as the stalker’s success probabilities in inferring the consumer’s private
information. Second, we measure the utility of the location data to an ad-
vertiser by considering a popular business use case - POI recommendation.
The utility is estimated by the accuracy of using the location data to infer
a consumer’s future locations. Finally, to enable a data collector to trade
off between consumer risk and advertiser utility, we propose an obfuscation
scheme suppressing consumers’ trajectories based on their individual risk
levels associated with each privacy threat and the informativeness of each
location in their trajectories. The proposed obfuscation scheme also provides
multiple options for the data collector to choose from based on specific busi-
ness contexts.

We validate the proposed framework on a unique data set containing
nearly a million mobile locations tracked from over 40,000 individuals over
a period of five weeks in 2018. To our best knowledge, this research reflects
an initial effort to analyze such a rich, granular, newly available human tra-
jectory data, and for the purpose of privacy preservation. We find that there
exists a high risk of invasion of privacy in the location data if a data col-
lector does not obfuscate the data. On average, a stalker could accurately
predict an individual’s home address within a radius of 2.5 miles and mobile
operating system with an 82% success. The proposed risk quantification en-
ables a data collector to identify high risk individuals and those features con-
tributing most to the risk associated with each privacy threat. Furthermore,
using the proposed obfuscation scheme, a data collector can achieve better
trade-off between consumer privacy and advertiser utility when compared
to several alternative rule-based and risk-based obfuscations. For instance,
in the home address inference threat, we find that a risk to consumer pri-
vacy can be reduced by 15%, a maximum decrease when compared to rule-
based heuristics, with less than 1% decrease in utility, a minimum decrease.
Further, we compare the proposed framework with eight baselines and ex-
emplify the performance gains in balancing the privacy-utility trade-off. In
summary, this study presents conceptual, managerial, and methodological
contributions to the literature and business practice, as summarized in the
Introduction. Besides offering a powerful tool to data collectors to preserve
consumer privacy while maintaining the usability of the increasingly accessi-
ble form of rich and highly valuable location data, this research also informs
the ongoing debate of consumer privacy and data sharing regulations.

Despite the contributions, there are limitations of this research, thus call-
ing for continued explorations of this rich and promising domain. For ex-
ample, our data contain device IDs, but no detailed demographics, associ-
ated with each consumer. When such data become available, one may, for
instance, develop deeper insights into which demographic sub-populations
are most vulnerable to privacy risks. Also, our analysis considers the loca-
tions’ longitudes and latitudes, but not names (such as Starbucks) or types
(such as hospital). Hence future research may further distinguish varied
sensitivity levels across locations in privacy preservation. Furthermore, as
other data, such as the same consumers’ online click streams or social media
comments, become linked to their mobile location data, more sophisticated
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privacy preservation methodologies may be developed. Lastly, in the pro-
posed obfuscation scheme, the location data is obfuscated by assuming one
consumer privacy threat and one advertiser objective at a time. That is, a
composition of privacy threats or business objectives is not addressed. This
calls for further methodological research to address this in the location data
sharing paradigm.
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Chapter 2

Explaining Anomalies in Groups

2.1 Introduction

Given a large dataset containing normal and labeled anomalous points, how
can we characterize the anomalies? What combinations of features and fea-
ture values make the anomalies stand out? Are there anomalous patterns, that
is, do anomalies form groups? How many different types of anomalies (or
groups) are there, and how can we describe them succinctly for downstream
investigation and decision-making by analysts?

Anomaly mining is important for numerous applications in security, medicine,
finance, etc., for which many detection methods exist (Aggarwal, 2013). In
this work, we consider a complementary problem to this vast body of work:
the problem of anomaly description. Simply put, we aim to find human-
interpretable explanations to already identified anomalies. Our goal is “reverse-
engineering” known anomalies by unearthing their hidden characteristics—
those that make them stand out.

The problem arises in a variety of scenarios, in which we obtain labeled
anomalies, albeit no description of the anomalies that could facilitate their
interpretation. Example scenarios are those where

(1) the detection algorithm is a “black-box” and only provides labels, due to
intellectual property or security reasons (e.g., Yelp’s review filter (Mukher-
jee et al., 2013)),

(2) the detection algorithm does not produce an interpretable output and/or
cannot explicitly identify anomalous patterns (e.g., ensemble detectors
like bagged LOF (Lazarevic and Kumar, 2005) or isolation forest (Liu,
Ting, and Zhou, 2008)), and

(3) the anomalies are identified via external mechanisms (e.g., when soft-
ware or compute-jobs on a cluster crash, loan customers default, credit
card transactions get reported by card owners as fraudulent, products
get reported by consumers as faulty, etc.). This setting also arises when
security experts set up “honeypots” to attract malicious users, and later
study their operating mechanisms (often manually). Examples include
fake followers of honeypot Twitter accounts (Lee, Eoff, and Caverlee,
2011) and fraudulent bot-accounts that click honeypot ads (Dave, Guha,
and Zhang, 2012).

Explaining anomalies is extremely useful in practice as anomalies are to
be investigated by human analysts in almost all scenarios. Interpretation
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of the anomalies help the analysts in sense-making and knowledge discov-
ery, troubleshooting and decision making (e.g., planning and prioritizing ac-
tions), and building better prevention mechanisms (e.g., policy changes).

Our work taps into the gap between anomaly detection and its end usage
by analysts, and introduces X-PACS for characterizing the anomalies in high-
dimensional datasets. Our emphasis is explaining the anomalies in groups1.
We model the anomalies to consist of (i) various patterns (i.e., sets of clus-
tered anomalies) and (ii) outliers (i.e., scattered anomalies different from the
rest). For example in fraud, malicious agents that follow similar strategies, or
those who work together in “coalition”, exhibit similar properties and form
anomalous groups. Bots deployed for e.g., click or email spam also tend to
produce similar footprints as they follow the same source of command-and-
control. At the same time, there may be multiple groups of fraudsters or bots
with different strategies.

Explaining anomalies in groups has three key advantages: (1) it saves in-
vestigation time by providing a compact explanation, rather than the analyst
having to go through anomalies one by one, (2) it provides insights into the
characteristics of different anomaly types, and (3) importantly, it draws at-
tention to anomalies that form patterns, which are potentially more critical
as they are repetitive.

To lay out the challenges from a data mining perspective, we first intro-
duce a list of desired properties (Desiderata 1–5) that approaches to the prob-
lem of anomaly explanation should satisfy. We then summarize our contri-
butions.

2.1.1 Desiderata for Anomaly Description

In a nutshell, anomaly explanation methods should effectively character-
ize different kinds of anomalies present in the data, handle high dimen-
sional datasets, and produce human-interpretable explanations that are dis-
tinct from normal patterns as well as succinct in length.

D1 Identifying different types of anomalies: Anomalies are generated
by mechanisms other than the normal. Since such mechanisms can vary
(e.g., different fraud schemes), it is likely for the anomalies to form multiple
patterns in potentially different feature subspaces. A description algorithm
should be able to characterize all types of anomalies.

D2 Handling high-dimensionality: Data instances typically have tens or
even hundreds of features. It is meaningful to assume that the anomalies in a
pattern exhibit only a (small) fraction of features in common. In other words,
anomalies are likely to “hide” in sparse subspaces of the full space.

D3 Interpretable descriptions: It is critical that the explanation of the
anomalies can be easily understood by analysts. In other words, descrip-
tions should convey what makes a group of instances anomalous in a human-
interpretable way.

D4 Discriminative (or detection) power: Explanations of anomalies should
not also be valid for normal points. In other words, descriptions should

1In this text, phrases ‘anomalous pattern’, ‘clustered anomalies’, and ‘group of anomalies’ are inter-
changeable.
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be discriminative and separate the anomalies from the normal points suf-
ficiently well. As a result, they could also help detect future anomalies of the
same type.

D5 Succinct descriptions: It is particularly important to have simple and
concise representations, for ease of visualization and avoiding information
overload. This follows the Occam’s razor principle.

2.1.2 Limitations of Existing Techniques

Providing interpretable explanations for anomalies is a relatively new area of
study compared to anomaly detection. However, the problem has similarities
to description based techniques for imbalanced datasets. Almost all existing
work in the anomaly detection literature assume anomalies to be scattered,
and try to explain them one at a time (Dang et al., 2014; Dang et al., 2013;
Keller et al., 2013; Knorr and Ng, 1999; Kuo and Davidson, 2016; Pevný and
Kopp, 2014). Related work on collective data description (Görnitz, Kloft, and
Brefeld, 2009; Tax and Duin, 2005), including rare class characterization (He
and Carbonell, 2010; He, Tong, and Carbonell, 2010), assume a single pat-
tern and/or do not look for subspaces. Other closely related areas are sub-
group discovery and inductive rule learners. Subgroup discovery techniques
(Gamberger and Lavrac, 2002; Herrera et al., 2011; Klösgen, 1996; Klösgen
and May, 2002; Loekito and Bailey, 2008; Vreeken, Van Leeuwen, and Siebes,
2011) aim to describe individual classes while inductive rule learners (Co-
hen, 1995; Clark and Niblett, 1989; Deng, 2014; Friedman, Popescu, et al.,
2008; Hara and Hayashi, 2016) focus on describing multiple classes with the
aim of generalization rather than explanation. Another related line of work
involves techniques for explaining black-box classifiers (Fong and Vedaldi,
2017; Koh and Liang, 2017; Montavon, Samek, and Müller, 2017; Ribeiro,
Singh, and Guestrin, 2016) where the emphasis is on explaining the predic-
tion of a single instance rather than a group of instances. Moreover, none of
these work has an explicit emphasis on succinct, minimal descriptions.

To the best of our knowledge and as we expand in related work in §2.5,
there is no existing work that provides a principled and general approach to
the anomaly description problem that meet all of the goals in our desiderata
adequately. (See Table 2.9 for an overview and comparison of related work.)

2.1.3 Summary of Contributions

Our work sets out to fill the gap, with the following main contributions:

• Desiderata for Anomaly Description: We introduce a new desiderata
and target five rules-of-thumb (D1–D5) for designing our approach.

• Description-in-Groups (DIG) Problem: We formulate the explanation
problem as one of identifying the various groups that the anomalies
form (D1) within low-dimensional subspaces (D2).

• Description Algorithm X-PACS: We introduce a new algorithm that
produces interpretable rules (D3)—intervals on the features in each sub-
space, that are also discriminative (D4)—characterizing the anomalies
in the group within a subspace but as few normal points as possible.
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• A New Encoding Scheme: We design a new encoding-based objective
for describing the anomalies in groups, based on the minimum descrip-
tion length (MDL) principle (Rissanen, 1978). Through non-monotone
submodular optimization we carefully select the minimal subspace rules
(D5) that require the fewest ‘bits’ to collectively describe all the anoma-
lies.

Reproducibility: All of our code and datasets are open-sourced at https:
//github.com/meghanathmacha/xPACS.

2.2 Overview and Problem Statement

In a nutshell, our goal is to identify a few, small micro-clusters of anomalies hid-
den in arbitrary feature subspaces that collectively and yet succinctly represent the
anomalies and separate them from the normal points. Specifically, our proposed
X-PACS finds a small set of low-dimensional hyper-ellipsoids (i.e., micro-
clusters corresponding to anomalous patterns each enclosing a subset of the
anomalies), and reveals scattered anomalies (i.e., outliers not contained in
any ellipsoid).

Features that are part of the subspace in which a hyper-ellipsoid lies con-
stitute its characterizing subspace. Ranges of values these features take are
further characterized by the location (center and radii) of a hyper-ellipsoid
within the subspace. Each hyper-ellipsoid is simply a “pack of anomalies”
(hence the name X-PACS2). The rest of the paper uses ‘hyper-ellipsoid’ or
‘pack’ in reference to anomalous patterns.

2.2.1 Example X-PACS input-output

In Fig. 2.1 we show an example of the input and output of X-PACS. We
consider the face images dataset, in which X-PACS identifies a minimum-
description packing with two anomalous patterns and an outlier. In Fig. 2.1a,
we visualize the dataset, where pixels are dimensions/features, that contains
9 labeled ‘anomalies’: [images 1–8] of 2 types (people w/ sunglasses or peo-
ple w/ white t-shirt or both) + [image 9] an outlier (one person w/ beard).
We also show [image 10], which is representative of 82 normal samples (peo-
ple w/ black t-shirt w/out beard or sunglasses). In Fig. 2.1b, we display
the anomalous patterns found by X-PACS (characterizing subspaces are 1-d,
feature rules/intervals shown at the bottom with arrows—the smaller, the
darker the pixel) together explain anomalies 1–8 succinctly; 1-d pack (left)
encloses images {1–6}, 1-d pack (right) encloses images {1,2,5,7,8}. Corre-
sponding features/pixels highlighted on enclosed images. In Fig. 2.1c, we
plot the description length (in bits, see §2.3.3) of anomalies individually (0
packs), vs. w/ 1–5 packs. X-PACS automatically finds the best number of
patterns (=2) that describe the anomalies and reveals the (unpacked) outlier
[image 9].

2X- refers to the number of packs, which we automatically identify via our data encoding scheme
(§2.3.3). We use this naming convention after X-MEANS (Pelleg and Moore, 2000), which finds the
number of k-means clusters automatically in an information-theoretic way.
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FIGURE 2.1: Example X-PACS input–output.(best in color)

2.2.2 Main Steps

Our X-PACS consists of three main steps, each aiming to meet various crite-
ria in our desiderata (D1–D5).

1. First we employ subspace clustering to automatically identify multiple
clusters of anomalies (D1) embedded in various feature subspaces. Ad-
vantages of subspaces are two-fold: handling “curse of dimensionality”
(D2) and explaining each pattern with only a few features (D5).

2. In the second step, we represent anomalies in each subspace cluster by
an axis-aligned hyper-ellipsoid. Ellipsoids, in contrast to hyperballs, al-
low for varying spread of anomalies in each dimension. Axis-alignment
ensures interpretable explanation with original features, which typi-
cally have real meaning to a user (D3). Moreover, we introduce a con-
vex formulation to ensure that the ellipsoids are “pure” and enclose
very few non-anomalous points, if at all, such that the characterization
is discriminative (D4).

3. Final step is summarization, where we strive to generate minimal de-
scriptions for ease of comprehension (D5). To decide which patterns de-
scribe the anomalies most succinctly, we introduce an encoding scheme
based on the Minimum Description Length (MDL) principle (Rissanen,
1978). Our encoding-based objective lends itself to non-monotone sub-
modular function maximization. Using an algorithm with approxima-
tion guarantees we identify a short list of patterns (hyper-ellipsoids)
that are (i) compact with small radii, i.e., range of values that anoma-
lies take per feature in the characterizing subspace is narrow; (ii) non-
redundant, which “pack” (i.e., enclose) mostly different anomalies in
various subspaces, and (iii) pure, which enclose either none or only a
few normal points. Importantly, the necessary number of packs is auto-
matically identified based on the MDL criterion.

Remark: Note that while X-PACS identifies descriptive patterns of the
anomalies, those can also be used for detection. Each pattern, along with its
characterizing features and its enclosing boundary within that subspace can
be seen as a discriminative signature (or set of rules), and can be used to label
future instances—a new instance that falls within any of the packs is labeled
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as anomalous. Instead of a single signature or an abstract classifier function
or model, however, X-PACS identifies multiple, interpretable signatures.

2.2.3 Notation and Definitions

Input dataset is denoted with D = {(x1, y1), . . . , (xm, ym)}, containing m
points in d-dimensions, where F depicts the feature set. A subset A ⊂ D
of points are labeled as yA = ‘anomalous’, |A| = a. The rest are yD\A =
‘normal’ points, denoted by N , |N | = n, a + n = m.

Our goal is to find “enclosing shapes”, called packs, that collectively con-
tain as many of the anomalies as possible. While arbitrary shapes would
allow for higher flexibility, we restrict these shapes to the hyper-ellipsoids
family for ease of interpretation. This is not a strong limitation, however,
since anomalous patterns are expected to form compact micro-clusters in
some feature subspaces, rather than lie on arbitrarily shaped manifolds. A
pack is formally defined as follows.

Definition 3 (pack) A pack pk is a hyper-ellipsoid in a feature subspace Fk ⊆ F ,
|Fk| = dk, characterized by its center ck ∈ Rdk and matrix Mk ∈ Rdk×dk where

pk(ck, Mk) = {x| (x− ck)
TM−1

k (x− ck) ≤ 1} .

We denote the anomalies that pk encloses by Ak ⊆ A, and the normal points that it
encloses by Nk ⊂ N .

Definition 4 (packing) A packing P is a collection of packs as defined above;
P = {p1(c1, M1), . . . , pK(cK, MK)} with size K.

2.2.4 Problem Statement

Based on the above definitions, our description-in-groups problem is for-
mally:

DIG Problem 1 Given a dataset D ∈ Rm×d containing a anomalous points in A
and n non-anomalous or normal points in N , a� n;

Find a set of anomalous patterns (packs) P = {p1, p2, . . . , pK}, each contain-
ing/enclosing a subset of the anomalies Ak, where

⋃
1≤k≤KAk ⊆ A,

such that P provides the minimum description length L(A|D,P) (in bits) for
the anomalies in D. (We introduce our MDL-based encoding scheme and cost func-
tion L(·) later in §2.3.3.)

Note that while packs enclose different subsets of anomalies in general,
any two packs can have some anomalous points in common (since an anomaly
can be explained in different ways), i.e., Ak ∩ Al 6= ∅ ∃k, l. Packs can also
share common features in their subspaces (as different types of anomalies
may share some common characteristics), i.e., Fk ∩ Fl 6= ∅ ∃k, l. Moreover,
the enclosing boundary of a pack may also contain some non-anomalous
points. These issues related to the redundancy and purity of the packs would
play a key role in the “description cost” of the anomalies. When it comes
to identifying a small set of packs out of a list of candidates, we formulate
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an encoding scheme as a guiding principle to selecting the smallest, least
redundant, and the purest collection of packs that would yield the shortest
description of all the anomalies.

2.3 X-PACS: Explaining Anomalies in Groups

Next we present the details of X-PACS, which consists of three building
blocks:

§2.3.1 Subspace Clustering: Identify clusters of anomalies in various sub-
spaces

§2.3.2 Refinement: Transform box-like subspace clusters to pure and com-
pact hyper-ellipsoids (or packs)

§2.3.3 Summarization: Select subset of packs that yields the minimum de-
scription length of anomalies

We present our algorithms for each of these next.

2.3.1 Subspace Clustering: Finding Hyper-rectangles

In our formulation, we allow for anomalies to form multiple patterns, intu-
itively each containing anomalies of a different kind. We model anomalous
patterns as compact “micro-clusters” in various feature subspaces.

In the first step, we use a subspace clustering algorithm, similar to CLIQUE
(Agrawal et al., 1998) and ENCLUS (Cheng, Fu, and Zhang, 1999), that dis-
covers subspaces with high-density anomaly clusters in a bottom-up, Apriori
fashion. There are two main differences that we introduce. First, while prior
techniques focus on a density (minimum count or mass) criterion, we use two
criteria: (i) mass and (ii) purity, in order to find clusters that respectively con-
tain many anomalous points, but also a low number of normal points. Sec-
ond, we do not enforce a strict grid over the features but find varying-length
high-density intervals through density estimation in a data-driven way.

Simply put, the search algorithm starts with identifying 1-dimensional in-
tervals in each feature that meet a certain mass threshold. These intervals are
then combined to generate 2-dimensional candidate rectangles. In general, k-
dimensional hyper-rectangles are generated by merging (k− 1)-dimensional
ones that meet the mass criterion in a hierarchical fashion. Thanks to the
monotonicity property of mass, the search space is pruned efficiently. Hyper-
rectangles generated during the course of the bottom-up algorithm that meet
both the mass and purity criteria are reported as clusters. A hyper-rectangle
is formally defined as follows.

Definition 5 (hyper-rectangle) Let F = f1 × f2 × . . . × fd be our original d-
dimensional numerical feature space. A hyper-rectangle R = (s1, s2, . . . , sd′), d′ ≤
d, resides in a space ft1 × ft2 × . . .× ftd′ where ti < tj if i < j, and has d′ sides,
sz = [lbz, ubz], that correspond to individual intervals with lower and upper bounds
in each dimension. A point x = 〈x1, x2, . . . , xd〉 is said to be contained or enclosed
in hyper-rectangle R = (s1, s2, . . . , sd′), if lbz ≤ xtz ≤ ubz ∀z = {1, . . . , d′}.
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Algorithm 1 SUBCLUS (D, ms, µ)

Input: dataset D = A ∪ N ∈ Rm×d with labeled anomalous and normal points,
mass threshold ms ∈ Z, purity threshold µ ∈ Z

Output: set of hyper-rectangles R = {R1, R2, . . .} each containing min. ms anoma-
lous & max. µ normal points

1: LetR(k) denote k-dimensional hyper-rectangles. InitializeR(1) by kernel density
estimation with varying quantile thresholds in q = {80, 85, 90, 95}, set k = 1

2: for each hyper-rectangle R ∈ R(k) do
3: if mass(R) ≥ ms then
4: if impurity(R) ≤ µ thenR(k)

pure = R(k)
pure ∪ R

else R(k)
¬pure = R(k)

¬pure ∪ R
5: end if
6: end for
7: R = R∪R(k)

pure

8: R(k+1) := generateCandidates(R(k)
pure ∪R(k)

¬pure)

9: ifR(k+1) = ∅ then returnR
10: k = k + 1, go to step 2

The outline of our subspace clustering is in Algorithm 1. It takes dataset
D as input with anomalous and normal points, a mass threshold ms equal to
the minimum number of required anomalous points and a purity threshold
µ equal to the maximum number of allowed normal points to be contained
inside, and returns hyper-rectangles that meet the desired criteria.

To begin (line 1), we find 1-dimensional candidate hyper-rectangles, equiv-
alent to intervals in individual features. To create promising candidate inter-
vals initially, we find dense intervals with many anomalous points. To this
end, we perform kernel density estimation (KDE3) on the anomalous points
and extract the intervals of significant peaks.4 This is achieved by extracting
the contiguous intervals in each dimension with density larger than the q-th
quantile of all estimated densities. q is varied in [80, 95] to obtain candidate
intervals of varying length. An illustration is given in Fig. 2.2. Since multiple
peaks may exist, multiple intervals can be generated per dimension as q is
varied.

At any given level (or iteration) of the Apriori-like SUBCLUS algorithm,
we scan all the candidates at that level (line 2–6) and filter out the ones that
meet the mass criterion (line 3). Those that pass the filter are later merged to
form candidates for the next level. Others with mass less than required are
discarded, with no implications on accuracy. The correctness of the pruning
procedure follows from the downward closure property of the mass criterion:
for any k-dimensional hyper-rectangle with mass≥ ms, its projections in any
one of (k− 1)-dimensions must also have mass ≥ ms.

At each level, we also keep track of the hyper-rectangles that meet both
the mass and the purity criteria (line 4). Purity exhibits the upward closure

3KDE involves two parameters - the number of points sampled to construct the smooth curve and
the kernel bandwidth. We set the sample size to 512 points and use the Silverman’s rule of thumb
(Silverman, 2018) to set the bandwidth.

4For categorical features, we would instead use histogram density estimation.

DocuSign Envelope ID: F8C86E15-F703-4BF7-9D1C-0466EF7A90C2



2.3. X-PACS: Explaining Anomalies in Groups 47

−0.2 0.0 0.2 0.4 0.8 1.0 1.2

0.
0

0.
5

1.
5

2.
0

0.6
Feature Values

80
85
90
95

q

1.
0D
en
si
ty

FIGURE 2.2: Identifying candidate hyper-rectangles in 1-d (equiva-
lent to intervals) by KDE for varying quantile thresholds q.

property: for any (k − 1)-dimensional hyper-rectangle that is pure (i.e. con-
tains ≤ µ normal points), any k-dimensional hyper-rectangle that subsumes
it is also pure. This property could help us stop growing pure candidates
by excluding them from the candidate generation step and speeding up the
termination. While correct, however, such early-termination would prevent
us from finding even purer hyper-rectangles later up in the hierarchy. To
obtain as many candidate packs as possible, we continue our search for all
hyper-rectangles that meet the mass criterion, and use the purity criterion
for selecting the ones to be output (line 7).

The algorithm proceeds level by level. Having identified k-dimensional
hyper-rectangles that satisfy the mass criterion, denoted R(k)

≥ms = R(k)
pure ∪

R(k)
¬pure (respectively for pure and not-pure sets), (k + 1)-dimensional can-

didates are generated (line 8) in two steps: join and prune. The join step
combines hyper-rectangles having first (k− 1) dimensions as well as sides in
common. That is, if (su1 , su2 , . . . , suk) and (sv1 , sv2 , . . . , svk) are two k-dimensional
hyper-rectangles in R(k)

≥ms, we require ui = vi and sui = svi ∀i ∈ {1, . . . , (k−
1)} and uk < vk to form candidate (k + 1)-dimensional hyper-rectangles of
the form (su1 , su2 , . . . , suk , svk). The prune step discards all (k+ 1)-dimensional
hyper-rectangles that have a k-dimensional projection outside R(k)

≥ms. Again,
the correctness of this procedure follows from the downward closure prop-
erty of mass.

Choice of (ms, µ): To obtain hyper-rectangles of varying size and quality,
packing potentially different anomalies (and non-anomalies), we run Algo-
rithm 1 with “conservative” parameters, i.e., low ms and high µ. As such, to
generate a good volume of candidates, we set (ms, µ) as the median of the
number of anomalous points, normal points from the 1-dimensional hyper
rectangles. Setting a higher ms and lower µ would prune more (and poten-
tially undesirably many) candidates in exchange of reduced time. We use
the median to strike a balance between the quality and running time. As
we describe later in §2.3.3, all these candidate packs are forwarded to a se-
lection algorithm, which carefully chooses the subset that yields the shortest
description of all the anomalies. As such, even though there are parameters
input to Algorithm 1, we do not expect them from the user, rather we vary
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and set those so as to generate various candidate packs. Having more candi-
dates is likely to increase our chance of finding a combination that explains
the anomalies the best (i.e., fewest bits).

To conclude, we note that other subgroup discovery techniques designed
to handle numerical attributes, such as SubgroupMiner (Klösgen and May,
2002) or MIDOS (Wrobel, 1997), can be used as an alternative to Algo. 1;
provided necessary modifications are incorporated to enforce the purity cri-
terion.

2.3.2 Refining Hyper-rectangles into Hyper-ellipsoids

Grid or interval-based subspace clustering algorithms are limited to finding
box-shaped rectangular clusters, and they may miss clusters inadequately
oriented or shaped. To allow more flexibility, we refine each hyper-rectangle
found by SUBCLUS into a hyper-ellipsoid (which we call a pack, recall Defini-
tion 3). An ellipsoid with center c is written as

p(c, M) = {x| (x− c)TM−1(x− c) ≤ 1}

for positive semi-definite matrix M � 0.
Given a hyper-rectangle R, let us denote the anomalous points it contains

by xi ∈ A for i = 1, . . . , aR (See Def.n 5) and anomalous points outside R by
xj ∈ A for j = aR+1, . . . , a. The normal points are denoted by xl ∈ N for
l = 1, . . . , n.

When we convert a given R to an ellipsoid, we would like all xi’s (anoma-
lous points) it already contains to reside inside the ellipsoid. In contrast, we
would like all xl’s (normal points) to remain outside the ellipsoid. The refine-
ment is achieved by enclosing as many as the other anomalous points (xj’s)
that are in the vicinity of R inside the ellipsoid as well. Those would be the
points that were left out due to axis-aligned interval-based box shapes that
hyper-rectangles are limited to capture. An illustration is given in Fig. 2.3.
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FIGURE 2.3: Example illustration of refining hyper-rectangles to ellip-
soids in 2-d. Anomalous points (black) captured by SUBCLUS (Alg.
1) in a (green) rectangle, other anomalous points (blue) in the vicinity,

and normal points (red).
First we describe our approach for xi’s and xl’s, the positive and negative

points that we respectively aim to include and exclude. The goal is to find
a discriminating function h(·) where h(xi) > 0 and h(xl) < 0. To this end,
we use the quadratic function h(x) = xTUx + wTx + w0, with parameters
= {U, w, w0}. We solve for by setting up an optimization problem based
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on a semi-definite program (SDP), that satisfies xT
i Uxi + wTxi + w0 > 0 for

all i and xT
l Uxl + wTxl + w0 < 0 for all l. Most SDP solvers do not work well

with strict inequalities, thus we modify to a non-strict feasibility problem by
adding a margin, and solve (for each R):

min
U,w,w0,ε

∑ εi + λ ∑ ε l

s.t. xT
i Uxi + wTxi + w0 ≥ 1− εi, i = 1, . . . , aR

xT
l Uxl + wTxl + w0 ≤ −1 + ε l, l = 1, . . . , n

U � −I, εi ≥ 0, ε l ≥ 0

where U is a negative semi-definite matrix. We can show that (U, w, w0)
define an ellipsoidal enclosing boundary, wrapping xi’s inside and leaving
xl’s outside, for which we allow some slack ε. λ is to account for the imbal-
ance between the number of positive and negative samples. The optimiza-
tion problem is convex, which we solve using an efficient off-the-shelf solver,
where each hyper-rectangle output by SUBCLUS can be processed indepen-
dently.

Having set up our refinement step as a convex quadratic discrimination
problem, we next describe how we incorporate xj’s (anomalous points out-
side R) into the optimization. Intuitively, we would like to include as many
other anomalies as possible inside the ellipsoid, but only those that are nearby
xi’s and not necessarily those that are far away. In other words, we only want
to “recover” the xj’s surrounding a given R and not grow the ellipsoid to in-
clude far away xj’s to the extent that it would end up including many normal
points as well.

To this end, we treat xj’s similar to xi’s but incur a lower penalty of ex-
cluding an xj than excluding an xi or including an xl. The optimization is
re-written as

min
U,w,w0,ε

∑ εi + α ∑ ε j + λ ∑ ε l

s.t. xT
i Uxi + wTxi + w0 ≥ 1− εi, i = 1, . . . , aR

xT
j Uxj + wTxj + w0 ≥ 1− ε j, j = aR+1, . . . , a

xT
l Uxl + wTxl + w0 ≤ −1 + ε l, l = 1, . . . , n

U � −I, εi ≥ 0, ε j ≥ 0, ε l ≥ 0

Here, setting α (penalty constant for xj’s) smaller than both 1 and λ is
likely a good choice. However, we do not know which (α, λ) pair would pro-
vide a good trade-off in general. Therefore, we sweep over a grid of possible
values5 and generate various ellipsoids, as illustrated for the example case
in Fig. 2.3. A last but important step is to sweep over the collection to dis-
card dominated packs. Specifically, we output only the set of p’s in the Pareto
frontier w.r.t. mass versus purity. In this set there are no two packs where one

5We use α = {10−6, 10−5, . . . , 1} × λ = {10−3, 10−2, . . . , 103}.
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strictly dominates the other—by enclosing both higher number of anomalous
points (higher mass) and lower number of normal points (higher purity).

We refine a hyper-rectangle R = (s1, s2, . . . , sd′) into an ellipsoid within
the same subspace, in other words, U ∈ Rd′×d′ and w ∈ Rd′ . For inter-
pretability, we constrain U to be diagonal to obtain axis-aligned ellipsoids as
shown in Fig. 2.3, since the original features have meaning to the user.6

Our explanation consists of one rule on each feature in the subspace. A
feature rule is a ± radius interval around the ellipsoid’s center. Formally:

Definition 6 (Feature rules) Given an axis-aligned ellipsoid p(c, M) in a sub-
space ft1× . . .× ftd′ , a rule on feature tz is an interval (c[z]−radiusz, c[z]+radiusz),
where radiusz =

√
Mzz, ∀z = {1, . . . , d′}. Conjunction of all d′ feature rules con-

stitute the signature of p.

To wrap up, we show how to compute c and M−1 from (U, w, w0) to ob-
tain the center and radii for an ellipsoid, using which we generate the feature
rules.
Obtaining c: At the boundary of the ellipsoid, h(x) = 0 and inside h(x) > 0.
Center is the point where h(x) is the maximum. Hence;

c := max
x

xTUx + wTx + w0 = −1
2

U−1w (2.1)

Obtaining M−1:

xT(−U)x−wTx− w0 < 0 (2.2)

xT(−U)x + 2cTUx− w0 < 0 using Eq. (2.1)

(x− c)T(−U)(x− c) + cTUc− w0 < 0

(x− c)T −U
(w0 − cTUc)

(x− c) < 1 =⇒ M−1 =
−U

(w0 − cTUc)

Obtaining radii:

(x− c)TM−1(x− c) =
d′

∑
z=1

(x[z]− c[z])2(M−1)zz ≤ 1

To compute radius in dimension z, we find point x where x[z′] = c[z′], ∀z′ 6=
z, and (x[z] − c[z])2 1

Mzz
= 1. It is easy to see that radiusz =

∣∣x[z]− c[z]
∣∣ =√

Mzz.

2.3.3 Summarization: Pack Selection for Shortest Description

Our ultimate goal is to find anomalous patterns that explain or summarize
the given anomalies in the dataset as succinctly as possible. Intuitively, “good”
patterns enclose similar groups of points and hence help compress the data.
To this end, we formulate our summarization objective by an encoding scheme

6If the anomalous patterns are to be used for detection, we estimate a full U matrix (i.e., possibly
rotated ellipsoid).
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and then devise an algorithm that carefully chooses a few patterns, in partic-
ular packs produced in §2.3.2, that yield the minimum encoding length. In
the following, we describe our encoding scheme, followed by the proposed
subset selection algorithm.

MDL formulation for encoding a given packing

Our encoding scheme involves a Sender (us) and a Receiver (remote). We
assume both of them have access to dataset D ∈ Rm×d but only the Sender
knows the set of anomalous points A. The goal of the Sender is to transmit
(over a channel) to the Receiver the information about which points are the
anomalies using as few bits as possible. Naïvely encoding all feature values of
every anomalous point individually would cost |A|d log2 f bits.7 The idea is
that by encoding the enclosing boundary of packs (ellipsoids) found in §2.3.2,
we (the Sender) could have the Receiver identify the anomalies in groups,
which could save bits.

Obviously we would want to avoid “noisy” packs that include many nor-
mal points—that would necessitate spending extra bits for encoding those
exceptions (i.e. “telling” the Receiver which points in a pack are not anoma-
lies). Moreover, we would want to avoid using packs that encode largely
overlapping group of anomalies, as bits would be wasted to redundancy.
While identifying the packing that yields the fewest bits is the main problem,
we first lay out our description length objective, for a given packing P =

{p1(c1, M1), . . . , pK(cK, MK)}:

• Transmit number of packs = log? K8

• For each pack pk ∈ P :

– Transmit number of dimensions = log? dk, dk ≤ d

– Transmit identity of dimensions = log2 (
d
dk
)

– Transmit the center ck = dk log2 f

– Transmit Mk = d2
k log2 f (dk log2 f if diagonal)

– Transmit exceptions (i.e., non-anomalies in pk):

* number of normal points in pk = log? nk

* identity of normal points; by forming all possible subsets of
size nk of mk (total number of points in pk) = log2 (

mk
nk
) (based

on a canonical ordering of subsets, where points are ordered by
distance to center)9

7Value of f is chosen according to the required floating point precision in the normalized feature
space Rd.

8Cost of encoding an arbitrary integer K is LN(K) = log?(K) + log2(c), where c ≈ 2.865064 and
log?(K) = log2(K) + log2(log2(K)) + . . . summing only the positive terms (Rissanen, 1978). We drop
log2(c) as it is constant for all packings.

9Another way to identify the normal points in a pack: sort points by their distance to center and
send the index of normal points in this list of length mk. This costs more for nk ≥ 2: nk log2 mk >

log2
m

nk
k

nk ! > log2 (
mk
nk
).
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Total cost of encoding with packing P is then

`(P) = log? K +
K

∑
k=1

L(pk), where (2.3)

L(pk) = log? dk + log2

(
d
dk

)
+ dk(dk + 1) log2 f + log? nk + log2

(
mk
nk

)
(2.4)

MDL objective function

Our objective is to find a packing, that is to identify a subset of packs, which
provides the minimum encoding length. However, we do not assume that
all anomalies would be covered by a packing, i.e.,

⋃
kAk ⊆ A, as there could

be anomalous points (outliers) that do not belong in any pattern but lie away
from the others. The outliers A\{⋃kAk} are yet to be encoded individually.
Description length of all anomalies A with packing P is

L(A|D,P) =
(
|A| − |

⋃
p∈P
Ap|

)
d log2 f +

[
log? |P|+ ∑

p∈P
L(p)

]
where the second term [in brackets] is `(P): cost of transmitting P (and

the anomalies covered by it) by Eq. (2.3), and the first term is the cost of
individually encoding the remaining anomalies not covered by P .

Notice that the objective of finding a subset S that minimizes the descrip-
tion length is equivalent to selecting a packing that reduces the naïve encoding
cost of |A|d log2 f the most, i.e.:

max
S

R`(S) = |
⋃

p∈S
Ap|cu − log? |S| − ∑

p∈S
L(p) +

[
log? |E |+ ∑

p′∈E
L(p′)

]
(2.5)

where cu = d log2 f is a constant unit-cost to encode a point, and set E de-
notes all the ellipsoids returned from the second part (refinement), as such,
S ⊆ E . First three terms of the objective capture the overall reduction in en-
coding cost due to the packing with ellipsoids in S . We can read it as aiming
to find a packing that covers as many anomalies as possible (expressive), while hav-
ing small model cost (low complexity)—containing only a few packs in low dimen-
sions. The constant term [in brackets] ensures that R`(S) is a non-negative
function.

Subset selection algorithm

for MDL packing
To devise a subset selection algorithm, we start by studying the proper-

ties of our objective function R`, such as submodularity and monotonicity
that could enable us to use fast heuristics with approximation guarantees.
Unfortunately, R` is not submodular as it is given in Eq. (2.5). However,
with a slight modification where we fix the solution size (number of output
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packs) to |S| = K, such that the second term is constant log? K, the function
becomes submodular, as we show below.

Theorem 1 Our cardinality-constrained objective set function R′`(S) is submodu-
lar. That is, for all subsets S ⊆ T ⊆ E and packs p ∈ E\T , it holds that

R′`(S ∪ {p})− R′`(S) ≥ R′`(T ∪ {p})− R′`(T ) .

Proof 1 Let Cover(S) = |⋃p∈S Ap| return the number of anomalies contained
by the union of packs in S . Canceling the equivalent terms and constants on each
side of the inequality, we are left with Cover(S ∪ {p})− Cover(S) ≥ Cover(T ∪
{p})− Cover(T ). The inequality follows from the submodularity property of the
Cover function. �

It is also easy to see that R′` is not monotonic.

Theorem 2 Our modified objective set function R′`(S) is non-monotonic. That is,
there exists ∃S ⊆ T where R′`(T ) < R′`(S).

Proof 2 For S ⊆ T , Cover(T ) ≥ Cover(S) due to monotonicity of Cover func-
tion. On the other hand, description cost of packs in T is ∑p∈T L(p) = ∑p′∈S L(p′)+
∑p′′∈T \S L(p′′) and hence is strictly greater than those of S . As such, for two pack-
ings S ⊂ T with the same coverage, we would have R′`(T ) < R′`(S).10 �

Maximizing a submodular function is NP-hard as it captures problems
such as Max-Cut and Max k-cover (Gharan and Vondrak, 2011). Neverthe-
less the structure of submodular functions makes it possible to achieve non-
trivial results. In particular, there exist approximation algorithms for non-
monotone submodular functions that are non-negative, like our objective func-
tion R′`. In particular, one can achieve an approximation factor of 0.41 for
the maximization of any non-negative non-monotone submodular function
without constraints (Gharan and Vondrak, 2011).

In our case, we need to solve our objective under the cardinality (i.e.,
subset size) constraint, where |S| is fixed to some K (since only then R` is
submodular). To this end, we use the RANDOM-GREEDY algorithm by Buch-
binder et al. (Buchbinder et al., 2014), which provides the best known guar-
antee for the cardinality-constrained setting, with approximation factors in
[0.356, 1

2 − o(1)]. The algorithm is quite simple; at each step of K iterations,
it computes the marginal gain of adding a single pack p ∈ E \ S to S and
selects one among the top K highest-gain packs uniformly at random.

Choice of K: We identify K, the number of packs to describe the anomalies,
automatically, best of which is unknown apriori. Concretely, we solve to
obtain subset S?K each time for a fixed K = |S?K| = 1, 2, . . . , a, and return the
solution with the largest objective value of R`(S?K) = R′`(S?K)− log? K in Eq.
(2.5). This is analogous to model selection with regularization for increasing
model size.

10Intuitively, this is where R` drops when we add a new pack to S (with positive cost) that does not
cover any new anomalies.
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2.3.4 Overall Algorithm X-PACS

Algorithm 2 puts together all three components of X-PACS as described
through §2.3.1–§2.3.3. We conclude this section with the computational com-
plexity analysis.

Algorithm 2 X-PACS (A∪N ): Explaining Anomalous Patterns

Input: dataset D = A∪N with labeled anomalies
Output: set of anomalous patterns (represented as hyper-ellipsoids)
P = {p1(c1, M1), . . . , pK(cK, MK)}

1: Set of hyper-rectanglesR = ∅
2: Obtain R(1) (1-d intervals) by kernel density estimation, varying cut-off thresh-

old in q = {80, 85, 90, 95}
3: f̂a := distribution of number of anomalies acrossR(1)

4: f̂n := distribution of number of normal points acrossR(1)

5: R := SUBCLUS(D, ms = q( f̂a, 50), µ = q( f̂n), 50)) by Alg. 1 in §2.3.1
6: Set of hyper-ellipsoids E = ∅
7: for R ∈ R do
8: ER = ∅
9: for α = {10−6, 10−5, . . . , 1} do

10: for λ = {10−3, 10−2, . . . , 103} do
11: ER := ER ∪ solve optimization problem in §2.3.2 for (R, α, λ)
12: end for
13: end for
14: E := E ∪ ParetoFrontier(ER)
15: end for
16: for K = 1, . . . , |A|: select a subset S∗K ⊂ E of K packs using the cardinality-

constrained RANDOM-GREEDY algorithm by Buchbinder et al. (Buchbinder et
al., 2014) to optimize the description length reduction objective R`(·) in §2.3.3.

17: return P := arg maxS∗K R′`(S∗K)− log∗ K

Computational complexity: We analyze the complexity of each part sep-
arately. Main computation of §2.3.1 is the SUBCLUS algorithm. Preliminary
KDE to create 1-d intervals is independently done per dimension in paral-
lel, only on the anomalous points. We use a constant number of sampling
locations, as such, KDE complexity is O(a) where a is the number of anoma-
lies. SUBCLUS then proceeds level-by-level and makes as many passes over
the data as the number of levels. For a d′ dimensional hyper-rectangle that
meets the mass and purity criteria, all its 2d′ projections in any subset of the
dimensions also meet the mass criterion (although may not be pure). As
such, running time of SUBCLUS is exponential in the highest dimensionality
of the hyper-rectangle that meets both criteria. Total time complexity of this
step is O(cdmax + mdmax) for a constant c11 that accounts for possibly multiple
dmax-dimensional hyper-rectangles and the smaller ones. The second term
captures the passes over the data over dmax levels.

The main computation of §2.3.2 is solving the SDP optimization problem,
for which we use the popular cvx SDPT3 solver that takes O([dmax + m]3)

11For instance, if we have t dmax-dimensional hyper-rectangles, then the complexity would be
O(t2dmax + mdmax), we could rewrite this as O(cdmax + mdmax)
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for an axis-aligned ellipsoid (or diagonal U) per iteration.12 To speed up, we
filter bulk of the points beyond a certain distance of a given hyper-rectangle,
since its refined hyper-ellipsoid would mostly include/exclude points inside
and nearby it. Filtering takes O(m), after which we solve the SDP for a near-
constant number of points. It is easy to show that finding the Pareto frontier
set of non-dominating packs (line 14)—such that no pack that has strictly
larger mass and smaller impurity exists—can be done through two passes
over all alternative hyper-ellipsoids generated for different (α, λ). This pro-
cedure does not change the overall complexity but is likely to yield a much
smaller set of ellipsoids per rectangle. We refine each hyper-rectangle inde-
pendently in parallel.

The main computation in the last part is the RANDOM-GREEDY algorithm,
which makes K iterations for a given number of packs K. In each itera-
tion, it makes a pass over the not-yet-selected hyper-ellipsoids, computes
the marginal reduction in bits by selecting each, and picks randomly among
the top K with the highest reduction. We use a size-K min-heap to maintain
the top K as we make a pass over the packs. Worst case cost is O(|E | log K),
multiplied by K iterations. We run RANDOM-GREEDY for K = 1, . . . , a, each
of which is parallelized. Total complexity of §2.3.3 is O(|E |a log a).

The number of ellipsoids, |E |, is in the same order of the number of hyper-
rectangles from §2.3.1, i.e., O(cdmax). Thus, the overall complexity can be
written as O(mdmax + cdmax a log a); linear on the number of data points m,
near-linear on a, and exponential in the largest pack dimensionality dmax.

2.4 Experiments

Through experiments on real-world datasets we answer the following ques-
tions. A quick reference to the UCI datasets used in our experiments is in
Table 2.1. Last column gives % savings (in bits) in describing/encoding the
anomalies by X-PACS.

Q1. Effectiveness: How accurate, interpretable, and succinct are our ex-
planations? How do they compare to descriptions by Decision Trees?

Q2. Detection performance: Do our explanations generalize? Can they be
used as signatures to detect future anomalies? To this end, we compare
X-PACS to 7 different baselines.

Q3. Scalability: How does X-PACS’s running time scale in terms of data
size and dimensionality?

2.4.1 Effectiveness of Explanations

Our primary focus is anomaly description where we unearth interpretable
characteristics for known anomalies. To this end, we present 6 case studies
with ground truth, followed by quantitative comparison to decision trees.

12In practice, the solver converges in 20-100 iterations.
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TABLE 2.1: Dataset statistics. X-PACS achieves significant savings (in
bits) by explaining anomalies in groups.

Name size m dim. d anom. a %-savings
ImagesI 88 120 8 99.75
ImagesII 91 180 9 88.53
ImagesIII 110 180 12 99.51
DigitI 1371 16 228 99.83
DigitII 1266 16 211 99.72
BrCancer 683 9 239 93.74
Arrythmia 332 172 87 92.92
Wine 95 13 24 97.04
Yeast 592 8 129 98.04

Case Studies

Our Image dataset contains gray-scale headshot images of various people.
We designate the majority wearing dark-color t-shirts as the normal samples.
We create 3 versions containing different number of anomalous patterns, as
we describe below. We compare X-PACS’s findings to the ground truth.

Case I: ImagesI We label 8 images of people wearing sunglasses as
anomalies as shown in (a) below, and combine them with the normal samples
none of which has sunglasses. In this simple scenario X-PACS successfully
identifies a single, 1-d pattern shown in (b), which packs all the 8 anomalies
but no normal samples. Also shown at the bottom of (b) is the interval of val-
ues, that is the± radius range around the pack’s center, for the corresponding
dimension (the lower, the darker the pixel).

(a) anomalies (b) X-PACS packing

Case II: ImagesII Next, we construct the 9 anomalies as shown earlier
in §2.2 in Fig. 2.1: 6 wearing sunglasses, 4 white t-shirt (2 wearing both),
plus 1 person with a beard (normal samples has no beard). As detailed in the
caption of the figure, X-PACS finds 2 pure packs, each 1-d, that collectively
describe the 8 anomalies and none of the normal samples. The bearded image
does not belong to any pack and is left out as an outlier.

Case III: ImagesIII We construct the third dataset with 12 anomalies:
the same 9 from ImagesII plus 3 faces (10–12) with beard as shown below.
In this case, X-PACS finds that characterizing the bearded images as a sep-
arate pattern is best to reduce the description cost, and outputs 3 pure, 1-d
packs shown in (b).
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(a) +3 anomalies (b) X-PACS packing

In all scenarios, X-PACS is able to unearth simple (low-dimensional) and
pure (discriminative) characteristics of the anomalies. Also, it automatically
identifies the correct number of anomalous patterns that yield the shortest
data description as shown in Fig. 2.4.
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FIGURE 2.4: X-PACS’s description cost of anomalies in image
datasets for K = 1, . . . , 5. Naïve/base cost (K = 0) is shown w/ a
horizontal line per dataset. X-PACS finds the appropriate number of
patterns automatically and significantly reduces the description cost.

Next we study a different domain. The Digit dataset contains instances
of digit hand-drawings in time. Features are the x and y coordinates of the
hand in 8 consecutive time ticks during which a human draws each digit on
paper. As such, each drawing has 16 features.

Case IV: DigitI We designate all drawings of digit ‘0’ as normal and a
sample of digit ‘7’ as ‘anomalous’ to study the characteristics of drawing a ‘7’
as compared to a ‘0’. 8 different positions of the hand in time averaged over
all corresponding samples of these two digits is shown below (a–b).
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(a) avg. ‘0’-drawing (b) avg. ‘7’-drawing (c) X-PACS packing

X-PACS identifies a single, 2-d pack containing all 228 instances of ‘7’s
and no ‘0’s, as given in Table 2.2, where we list the ellipsoid center and the
±radius interval where the hand is positioned for the characterizing features.
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The anomalous pattern suggests right & bottom positioning of the hand re-
spectively at times t3 & t6, which follows human intuition—in contrast, typ-
ical hand positions for ‘0’ at those ticks are opposite; at the left & top. Corre-
sponding avg. hand positions in 2-d is shown in (c) above.

TABLE 2.2: DigitI ‘0’ vs. ‘7’: X-PACS finds one 2-d pack.

packID feature center interval |Ak| |Nk|
k = 1 x@t3 0.82 (0.66, 0.98) 228 0

y@t6 0.17 (0.02, 0.31)

Case V: DigitII We perform a second case study where we designate
digit ‘8’ drawings as normal and ‘2’ and ‘3’ as the anomalies. Avg. draw-
ings are illustrated in (a–b) below. X-PACS is able to describe 210 of the 211
anomalies in a single, 4-d pack listed in Table 2.3 and illustrated in (c). The
single unpacked drawing is shown in (d) and looks like an odd ‘3’.
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(a) avg. ‘8’ (b) avg. ‘2,3’ (c) X-PACS packing (d) outlier

TABLE 2.3: DigitII ‘8’ vs. ‘2’,‘3’: X-PACS’s one 4-d pack.

packID feature center interval |Ak| |Nk|
k = 1 y@t3 0.83 (0.71, 0.95) 210 0

y@t4 0.54 (0.38, 0.69)
y@t7 0.04 (0.00, 0.11)
y@t8 0.05 (0.00, 0.12)

Looking at the avg. ‘8’ vs. ‘2’ or ‘3’ drawings above,
it appears that a single feature like y@t8, i.e., verti-
cal hand position at the end, should be discriminative
alone; as ‘8’ tends to end at the top vs. others at the bot-
tom.

Interestingly, none of the 1-d packs on y@t8 is pure
like the 4-d one output. A non-anomalous sample it contains is shown on the
right, which is an ‘8’ that starts and ends at the bottom just like most ‘2’ and
‘3’s.

Case VI: BrCancer Finally, breast cancer dataset contains 239 malign
(anomalous) and 444 benign cancer instances. X-PACS finds 5 packs listed
in Table 2.4, covering a total of 226 anomalies while also including 17 unique
normal points in the packing. Pack 1 characterizes 162 cases with high ‘chro-
matin’. Second 2-d pack suggests large ‘clumpthickness’ and ‘mitoses’ (re-
lated to cell division and tissue growth) for 145 cases. Smaller pure 1-d packs,
4 and 5, indicate very large ‘cellsize’ and ‘nucleoili’. These findings are intu-
itive even to non-experts like us (although we lack the domain expertise to
interpret pack 3).

13Note that RuleFit is averaged over seven datasets due to underspecified regression in
Arrythmia and Yeast
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TABLE 2.4: BrCancer: X-PACS finds five 1-d or 2-d packs.

packID feature center interval |Ak| |Nk|
k = 1 chromatin 0.76 (0.63,

0.88)
162 11

k = 2 clumpthickness0.94 (0.84,
1.00)

145 5

mitoses 0.28 (0.00,
0.63)

k = 3 epicellsize 0.33 (0.24,0.42) 97 2
barenuclei 0.11 (0.09,0.14)

k = 4 nucleoili 0.98 (0.93,
1.00)

75 0

k = 5 cellsize 0.99 (0.98,
1.00)

67 0

TABLE 2.5: Interpretability measures (a)–(d): X-PACS vs. Rule learn-
ers. Also given for reference is detection performance in AUPRC (See

§2.4.2 for details).

measure (a) # of (b) avg. (c) avg. (d) avg. detection
/method groups length impurity width performance

DT-5 4.0000 2.9889 0.0233 0.4769 0.6252
DT-4 3.7778 2.7856 0.0422 0.4801 0.6070
DT-3 3.0000 2.4078 0.0700 0.4812 0.6210
DT-2 2.4444 1.8889 0.1378 0.4872 0.6236
DT-1 1.7778 1.0000 0.4056 0.5017 0.5656

RuleFit13 12.0000 1.7800 0.0229 0.4643 0.8471
Ripper 2.4444 1.5244 0.0178 0.3889 0.7244

X-PACS 2.5556 2.1000 0.0152 0.2333 0.8781

X-PACS vs. Rule Learners

Since in our work, we view anomalies as an already defined class, explaining
anomalies is equivalent to describing an under represented target class (Wro-
bel, 1997). Hence, we compare X-PACS to techniques that explain labeled
data. To this end, we consider interpretable supervised models, specifically,
inductive rule based learners that aim to extract rules from a labeled data set
that are discriminative in nature. We argue that linear classifiers like logistic
regression are not comparable to X-PACS for two key reasons. First, they do
not group the anomalies, but rather output a single separating hyperplane.
Second, they do not provide rules on the features, but only feature coefficients,
which could be negative (hard to interpret). Further, techniques aiming to ex-
plain black box predictions are not directly comparable to our method since
most of the works aim to explain one instance at a time compared to the
group wise explanations X-PACS provides.

We compare X-PACS to the following popular rule based learners.

1. Decision Tree (DT): DT aims to partition (or group) the labeled data
into pure leaves. We treat the leaves containing at least two anomalies
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FIGURE 2.5: X-PACS achieves
the best balance between in-
terpretability measures (a)–(d)
[lower is better for all of them],
and is significantly better at de-
tection (e) [higher is better], as
compared to several rule learn-

ers.

(e) AUPRC

analogous to our packs. Each such leaf is characterized by the feature
rules (or predicates) on the path from the root.

2. Ripper (Cohen, 1995): Ripper is a popular inductive rule learner that
sequentially mines for feature rules with high accuracy and coverage
with the aim to achieve generalization. We use a publicly available im-
plementation of Ripper in the Weka repository for our experiments and
consider rules that are labeled anomalous.

3. RuleFit (Friedman, Popescu, et al., 2008): RuleFit is an ensemble learner
where the base learner is a rule generated by a decision tree. A regres-
sion/classification is setup using the base learners to identify the rules
that are important in discriminating the different classes. We use the
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publicly available RuleFit14 implementation and use the rules with non-
zero coefficients with atleast two anomalies.

To compare X-PACS with rule learners, it is not fair to use description
length since the listed techniques do not explicitly optimize it. Instead, we
use the following external interpretability measures proposed in (Lakkaraju
et al., 2017) (all being lower the better): (a) number of groups (anomalous
packs), (b) avg. length of rules (pack dimensionality), (c) avg. fraction of
normal points within packs (impurity divided by n), and (d) avg. interval
width across feature rules. In other words, an explanation with fewer groups,
fewer rules, fewer exceptions, and smaller spread in features is considered
more interpretable.

DT has no means to choose the number of packs automatically. There-
fore, we report DT results for depths 1–5 as compared to X-PACS in Table
2.5, averaged across all datasets. In addition to the interpretability measures,
we report the detection performance in AUPRC (area under precision-recall
curve) on held-out data (80-20 split) that quantifies the generalization of the
subspace rules. Results on individual datasets per measure are shown with
radar charts in Fig. 2.5. (See Table 2.6 for detailed results.) Notice the trade-
offs between the measures for DT: while (c) and (d) tend to decrease with
increasing depth, (a) and (b) increase. The lack of rule summarization in
RuleFit is evident in the number of groups (a) where X-PACS consistently
produces smaller number of explanations across various data sets. We also
note that X-PACS produces tighter intervals (d) compared to Ripper empha-
sizing the concreteness of the explanations. Overall, X-PACS achieves the
best trade-off with lower overall values across the interpretability measures.
Moreover, our signatures are significantly better at detecting future anoma-
lies. We present more detailed experiments on detection next.

Ablation Study

We study the importance of the refinement step discussed in §2.3.2 by per-
forming an ablation study. To this end, we omit the refinement of hyper-
rectangles into hyper-ellipsoids in X-PACS (denoted as ablated X-PACS). Re-
call that the primary reason we perform the refinement step is to cover more
anomalous points and reduce the number of normal points in the packs (See
Fig. 2.3). Hence, to showcase the benefit, in Table 2.7, we compare the pro-
portion of anomalous (higher is better) and normal points (lower is better)
covered in the final packs obtained using X-PACS and the ablated X-PACS.
In addition, we also report the %-savings (higher is better) achieved in both
cases. In X-PACS, the summarization step (See §2.3.3) transmits the center
and the diagonal matrix of the packs §2.3.3. To accommodate hyper rectan-
gles, we modify this to transmit the upper and lower bounds of the hyper
rectangles in the ablated X-PACS.

From Table 2.7, we observe that X-PACS is indeed able to cover more
anomalous points, while avoiding normal points in the final packs for all the
datasets. These results demonstrate the utility of the refinement step.

14R package pre : https://CRAN.R-project.org/package=pre
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TABLE 2.6: Rule learners and DT (with respective depths 1–5) com-
pared to X-PACS across datasets on interpretability measures (a)–
(d) [all lower the better] as well as detection performance AUPRC
[higher the better]. RuleFit leads to underspecified regression in

Arrythmia and Yeast which we denote by NA.

Measure
Dataset/

Model
Image

I
Image

II
Image

III
Digit

I
Digit

II
Br

Cancer
Arry
thmia

Wine Yeast

(a)
number

of
groups

DT-5 1.00 2.00 2.00 3.00 2.00 10.00 9.00 1.00 6.00
DT-4 1.00 2.00 2.00 3.00 2.00 8.00 9.00 1.00 6.00
DT-3 1.00 2.00 2.00 3.00 2.00 6.00 6.00 1.00 4.00
DT-2 1.00 2.00 2.00 3.00 2.00 4.00 4.00 1.00 3.00
DT-1 1.00 2.00 2.00 2.00 2.00 2.00 2.00 1.00 2.00

RuleFit 3.00 15.00 10.00 13.00 8.00 24.00 NA 11.00 NA
Ripper 1.00 2.00 2.00 2.00 2.00 3.00 5.00 1.00 4.00

X-PACS 1.00 2.00 3.00 1.00 1.00 5.00 7.00 1.00 2.00

(b)
avg.

length
of rules

DT-5 1.00 2.00 1.50 3.00 2.50 4.40 4.33 4.00 4.17
DT-4 1.00 2.00 1.50 3.00 2.50 3.63 3.78 4.00 3.67
DT-3 1.00 2.00 1.50 2.67 2.50 3.00 3.00 3.00 3.00
DT-2 1.00 2.00 1.50 2.00 2.50 2.00 2.00 2.00 2.00
DT-1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

RuleFit 1.00 1.40 1.80 1.80 1.92 2.67 NA 1.81 NA
Ripper 1.00 1.00 1.50 2.00 1.50 1.67 1.80 2.00 1.25

X-PACS 1.00 1.00 1.00 2.00 4.00 1.40 1.00 4.00 3.50

(c) avg.
fraction

of
normal
points

DT-5 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.00 0.11
DT-4 0.00 0.00 0.00 0.00 0.00 0.11 0.11 0.00 0.16
DT-3 0.00 0.00 0.00 0.00 0.00 0.16 0.16 0.07 0.24
DT-2 0.00 0.00 0.00 0.32 0.01 0.25 0.25 0.08 0.33
DT-1 0.00 0.50 0.50 0.50 0.50 0.50 0.50 0.15 0.50

RuleFit 0.00 0.02 0.01 0.02 0.05 0.01 NA 0.05 NA
Ripper 0.00 0.01 0.00 0.00 0.00 0.01 0.10 0.03 0.01

X-PACS 0.00 0.00 0.00 0.00 0.00 0.00 0.13 0.00 0.01

(d)
avg.

interval
width

DT-5 0.29 0.50 0.49 0.53 0.26 0.56 0.53 0.68 0.46
DT-4 0.29 0.50 0.49 0.53 0.26 0.54 0.53 0.68 0.51
DT-3 0.29 0.50 0.49 0.53 0.26 0.50 0.54 0.72 0.51
DT-2 0.29 0.50 0.49 0.51 0.29 0.50 0.50 0.79 0.52
DT-1 0.29 0.50 0.50 0.50 0.50 0.50 0.50 0.73 0.50

RuleFit 0.28 0.25 0.39 0.53 0.47 0.61 NA 0.72 NA
Ripper 0.24 0.15 0.31 0.32 0.28 0.7 0.33 0.79 0.38

X-PACS 0.21 0.15 0.16 0.31 0.19 0.20 0.39 0.21 0.28

AUPRC

DT-5 0.49 0.38 0.39 0.79 0.95 0.89 0.50 0.55 0.68
DT-4 0.49 0.38 0.39 0.79 0.95 0.86 0.50 0.55 0.55
DT-3 0.49 0.38 0.39 0.79 0.95 0.87 0.42 0.69 0.60
DT-2 0.49 0.38 0.39 0.79 0.95 0.86 0.47 0.61 0.67
DT-1 0.49 0.27 0.39 0.74 0.81 0.80 0.46 0.61 0.51

RuleFit 0.93 0.93 0.51 0.98 0.97 0.90 NA 0.71 NA
Ripper 1.00 0.35 0.43 0.97 0.98 0.91 0.43 0.70 0.75

X-PACS 1.00 0.92 0.99 0.99 0.98 0.95 0.56 0.80 0.71

2.4.2 Detection Performance

While not our primary focus, X-PACS can also be used to detect anomalies.
Specifically, given the packs identified from historical/training data, a future
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TABLE 2.7: Ablation Study: X-PACS vs. ablated X-PACS (no refine-
ment to ellipsoids). Coverage of anomalous points (higher is better),
coverage of normal points (lower is better), and % savings (higher is

better).

Method
Images

I
Images

II
Images

III
Digit

I
Digit

II
Br

Cancer
Arry
thmia

Wine Yeast

Coverage of
anom. points

x-PACS 1.00 0.89 1.00 1.00 1.00 0.95 0.93 0.96 0.68
ablated
x-PACS

1.00 0.89 1.00 0.96 0.89 0.88 0.78 0.92 0.62

Coverage of
normal points

x-PACS 0 0 0 0 0 0.03 0.35 0.11 0.10
ablated
x-PACS

0 0 0 0.01 0.01 0.05 0.53 0.18 0.13

%-savings
x-PACS 99.75 88.53 99.51 99.83 99.72 93.74 92.92 97.04 98.04
ablated
x-PACS

99.75 88.53 99.51 92.11 87.21 85.68 78.16 91.42 90.51

test instance that falls in any one of the packs (i.e., enclosed within any hyper-
ellipsoid in the packing) can be flagged as an anomaly.15

To measure detection quality, we compare X-PACS to 7 competitive base-
lines on all datasets.

1. Mixture of K-GAUSSIANS on the anomalous points. K ∈ {1, 2, . . . , 9}
chosen at the “knee” of likelihood. Anomaly score of test instance: max-
imum of the probabilities of being generated from each cluster.

2. KDE on the normal points. Gaussian kernel bandwidth chosen by cross-
validation. Anomaly score: negative of the density at test point.

3. NN. Anomaly score: distance of test point to its nearest neighbor (nn)
normal point in training set, divided by the distance of that nn point to
its own nearest normal point in training set.

4. PCA+SVDD on all points (Tax and Duin, 2005). A single hyperball that
aims to enclose anomalous points in the PCA-reduced space16, for which
the embedding dimensionality is chosen at the “knee” of the scree plot.
Anomaly score: distance of test point from the hyperball’s center.

5. DT on all points, where we balance the data for training and regularize
by tree-depth, chosen from {1, 2, . . . , 30} via cross-validation. Anomaly
score: number of anomalous samples in the leaf the test point falls into
divided by leaf size.

6-7) SVM-LIN & SVM-RBF on all points. Hyperparameters set by cross-
validation. Anomaly score: “confidence”, i.e., distance from decision
boundary.

We create 3 folds of each dataset, and in turn use 2/3 for training and 1/3
for testing, except the Images datasets with the fewest anomalies for which
we do leave-one-out testing. All points receive an anomaly score by each

15Note that, like any supervised method, X-PACS could only detect future instances of anomalies of
known types.

16SVDD optimization diverged for some high dimensional datasets, therefore, we performed PCA
as a preprocessing step.
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TABLE 2.8: Area under precision-recall curve (AUPRC) on anomaly
detection.

Method ImagesIImagesIIImagesIIIDigitIDigitIIBrCancer Arrythmia Wine Yeast

K-GAUSSIANS 0.182 0.239 0.184 0.162 0.333 0.613 0.227 0.258 0.265
KDE 0.952 0.978 0.987 0.989 0.997 0.981 0.571 0.667 0.681
NN 0.491 0.472 0.659 0.967 0.821 0.520 0.546 0.562 0.348
PCA+SVDD 0.286 0.217 0.212 0.331 0.529 0.861 0.295 0.566 0.606
DT 0.802 0.764 0.812 0.831 0.961 0.884 0.516 0.637 0.673
SVM-LIN 1.000 1.000 1.000 0.999 0.999 0.984 0.755 0.994 0.823
SVM-RBF 1.000 1.000 1.000 1.000 1.000 0.964 0.810 0.984 0.861
X-PACS 1.000 0.921 0.990 0.993 0.976 0.951 0.564 0.799 0.701

method as described above. X-PACS’s anomaly score for a test instance x is
the maximum hk(x) = xTUkx + wT

k x + w0k among all pk’s in the packing re-
sulting from training data. We rank points in decreasing order of their score,
and report the area under the precision-recall curve in Table 2.8.

SVMs achieve the highest detection rate, as might be expected. However,
kernel SVM cannot be interpreted. Linear SVM, like LR, does not identify
anomalous patterns nor does it produce any explicit feature rules. Notably,
X-PACS outperforms all other baselines considerably across datasets, includ-
ing DT, which produces the most interpretable output among the baselines
as discussed in §2.4.1.

2.4.3 Scalability

Finally, we quantify the scalability of X-PACS empirically. To this end, we
implement a synthetic data generator, parameterized by data size, total di-
mensionality, maximum pack size and dimensionality and number of anoma-
lous packs. Anomalies are sampled from a small range per feature within a
subspace, and normal points are sampled from the reverse of the histogram
densities derived from the anomalous points.

Fig. 2.6 shows the running time w.r.t. data size m, dimensionality d, av-
erage pack dimensionality davg, and total number of anomalies a. All plots
demonstrate near-linear scalability. Recall that we showed exponential com-
plexity w.r.t. maximum pack dimensionality dmax. Notably, we observe lin-
ear time growth on average.

2.5 Related Work

Related areas of study span across outlier explanation, subspace clustering
and subspace outlier detection, data description, subgroup discovery, rule
learning, rare class discovery and methods to explain black-box classifiers.
We illustrate related work in the context of our desiderata in Table 2.9.

Outlier explanation: The seminal work by Knorr and Ng (Knorr and Ng,
1999) provides what they call “intensional knowledge”, per outlier, by iden-
tifying the minimal subspaces in which it deviates. To find the optimal sub-
set of features that differentiate the outliers from normal points, (Kuo and
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FIGURE 2.6: X-PACS scales linearly with input size.

Davidson, 2016) formulates a constraint programming problem and (Keller
et al., 2013) takes a subspace search route. Similarly, (Dang et al., 2014; Dang
et al., 2013; Micenková et al., 2013) aim to explain one outlier at a time by fea-
tures that participate in projection directions that maximally separate them
from normal points. All existing work in this area assume the outliers are scat-
tered and strive to explain them individually rather than in groups. Therefore,
they cannot identify anomalous patterns. Moreover, they do not focus explic-
itly on shortest description, let alone in a principled, information-theoretic
way as we address in this work.

Extending earlier work (Angiulli, Fassetti, and Palopoli, 2009) on explain-
ing single outliers, (Angiulli, Fassetti, and Palopoli, 2013) aims to explain
groups of outlier points or what they call sub-populations. They search
for 〈context, feature〉 pairs, where the (single) feature can differentiate as
many outliers as possible from normal points that share the same context.
It is important to note that their goal is to explain a group (or set) of out-
liers altogether and not particularly explaining them with multiple groups.
Similarly, (Zhang, Diao, and Meliou, 2017) describes anomalies grouped in
time. They construct explanatory Conjunctive Normal Form rules using fea-
tures with low segmentation entropy, which quantifies how intermixed nor-
mal and anomalous points are. They heuristically discard highly correlated
features from the rules to get minimal explanations. Again, they strive to
explain all the anomalies as a group, and not in multiple groups.

We found that SRF (sapling random forest) (Kopp, Pevný, and Holena,
2014) aims to explain and cluster outliers similar to our problem setting.
They build on their earlier work (Pevný and Kopp, 2014), which explains
outliers one at a time by learning an ensemble of small decision trees (called
saplings) and combining the rules (from root to leaf in which the outlier
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lies) across the trees. SRF then groups the outliers using k-means cluster-
ing based on the similarity of their explanations. However, there is no guar-
antee on the minimality of their overall description, since grouping is done
as a post-processing step and by using a local-optima-prone clustering algo-
rithm. Moreover, there is not much discussion in their paper on the choice
of the number of clusters, nor the format of the final description after the
anomalies are clustered. We are not aware of a publicly available implemen-
tation of SRF to compare with our proposed method and hence omit it from
the experimental evaluation.

Subspace clustering and Outlier detection: There is a long list of work
on subspace clustering (Agrawal et al., 1998; Cheng, Fu, and Zhang, 1999;
Kriegel et al., 2005; Müller et al., 2009; Sequeira and Zaki, 2004) that aim to
find high-density clusters in feature subspaces. (See (Parsons, Haque, and
Liu, 2004; Kriegel, Kröger, and Zimek, 2009) for reviews.) Some others are
projection based that work in transformed feature spaces (Aggarwal et al.,
1999; Moise, Sander, and Ester, 2006). However, these are unsupervised
methods and their goal is not explaining labeled data, nor they focus on min-
imal explanations. There is also a long list of subspace-based outlier detection
methods (Keller, Müller, and Böhm, 2012; Kriegel et al., 2009; Kriegel et al.,
2012; Müller et al., 2012; Müller et al., 2008; Müller, Schiffer, and Seidl, 2011),
however, those do not address the description problem.

Data description and Rare class discovery: Another line of related work
is data description (Görnitz, Kloft, and Brefeld, 2009; Tax and Duin, 2005) and
rare class (or category) characterization (He, Tong, and Carbonell, 2010; He
and Carbonell, 2010). The main goal behind all of these work is to explain the
data via a hyperball separating rare-class points from normal points. How-
ever, all of them assume that the former cluster in a single hyperball, and with
the exception of (He and Carbonell, 2010), search for a full-dimensional enclos-
ing hyperball. As such, they do not address the curse-of-dimensionality or
identify multiple clusters embedded in different subspaces.

Subgroup discovery and Rule learning: Classification rule learning algo-
rithms have the objective of generating models consisting of a set of rules in-
ducing properties of all the classes of the target variable, while in subgroup
discovery the objective is to discover individual rules of interest (See (Her-
rera et al., 2011) for an overview). The seminal work of rule based learners
such as Ripper (Cohen, 1995) and CN2 (Clark and Niblett, 1989) sequentially
mine for rules with high accuracy and coverage. More recently, (Friedman,
Popescu, et al., 2008) proposes RuleFit, an ensemble learner where the base
learner is a rule generated by a decision tree. A regression/classification
is setup using the base learners to identify the rules that are important in
discriminating the different classes. Few other work in ensemble learning
(Deng, 2014; Hara and Hayashi, 2016) build ensemble trees. While rules are
interpretable, they are learnt with an aim to achieve generalization (to un-
seen data). This is different from our work where we primarily focus on
describing the under-represented class (anomalies) without emphasizing the
generalization.

SubgroupMiner (Klösgen and May, 2002) extends seminal work in sub-
group discovery (MIDOS (Wrobel, 1997), Explora (Klösgen, 1996)) to handle
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numerical and categorical attributes. SD (Gamberger and Lavrac, 2002) pro-
poses an interactive subgroup discovery technique based on the variation of
beam search algorithms guided by expert knowledge. Krimp (Vreeken, Van
Leeuwen, and Siebes, 2011) proposes a greedy MDL based approach to mine
few frequent item sets describing a dataset. This method can be used on
multi-class data to provide descriptions of each class, it is however limited
to categorical attributes. Discriminative pattern mining techniques (Loekito
and Bailey, 2008) also assume categorical features and aim to extract contrast
patterns (item sets) with large support difference across classes.

A key difference between the techniques discussed above and our work
is the summarization scheme described in §2.3.3. Our MDL based encoding
scheme leads to a submodular rule selection with theoretical guarantees that
the current subgroup discovery or rule learning algorithms do not explore.
The improvement of the summarization scheme is evident from our experi-
ments (See Table 2.6), comparing X-PACS to several rule learners on various
interpretability measures.

Explaining black-box classifiers: Approaches such as (Fong and Vedaldi,
2017; Koh and Liang, 2017; Montavon, Samek, and Müller, 2017; Ribeiro,
Singh, and Guestrin, 2016) aim to explain the decision made by a black-box
predictor. LIME (Ribeiro, Singh, and Guestrin, 2016) finds nearest neighbors
to single input labeled example to construct a linear interpretable model that
is locally faithful to the predictor. Further, authors propose a submodular
optimization framework to pick instances that are representative of the pre-
dictions of a classifier. Other work (Fong and Vedaldi, 2017; Koh and Liang,
2017) explain the model by perturbing the features to quantify the influence
on prediction. However, these work do not aim to explain multiple instances
collectively, as such they do not handle the summarization problem, which
are hence not comparable to our proposed method.

All in all, none of the existing methods provides all of 1) collective (as
opposed to individual) explanations, 2) explanations for multiple anomalous
groups, 3) in characterizing subspaces, 4) using interpretable feature rules that
can 5) discriminate anomalies from normal points, 6) aiming to minimize de-
scription length.

2.6 Conclusion

We considered the problem of explaining given anomalies in high-dimensional
datasets in groups. Our key idea is to describe the data by the patterns
it contains. We proposed X-PACS for identifying a small number of low-
dimensional anomalous patterns that “pack” similar, clustered anomalies
and “compress” the data most succinctly. In designing X-PACS, we com-
bined ideas from data mining (bottom-up algorithms with pruning), opti-
mization (nonlinear quadratic discrimination), information theory (data en-
coding with bits), and theory of algorithms (nonmonotone submodular func-
tion maximization). Our notable contributions are listed as follows.

• A new desiderata for the anomaly description problem, enlisting five
desired properties (D1–D5),
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• A new problem formulation, for explaining a given set of anomalies in
groups (D1),

• Description algorithm X-PACS, which provides low-dimensional (D2),
interpretable (D3), and discriminative (D4) feature rules per anomalous
group,

• A new anomaly encoding scheme, based on the minimum description
length (MDL) principle, that lends itself to efficient optimization to pro-
duce minimal explanations (D5) with guarantees.

Through experiments on real-world datasets, we showed the effective-
ness of X-PACS both in explanation and detection and superiority to com-
petitive baselines. For reproducibility, all of our source code and datasets are
publicly released at https://github.com/meghanathmacha/xPACS.
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TABLE 2.9: Comparison of related work in terms of properties D1–D5
in reference to our Desiderata (see §2.1.1).
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Chapter 3

Social Determinants of Health

3.1 Introduction

3.1.1 Social Determinants of Health

The U.S. sees 35.7 million hospital stays per year, representing a hospital-
ization rate of 104.2 stays per 1,000 population. Hospitalizations incur enor-
mous costs, $417.4 billion per year and $11,700 per stay. Since the hospital-
ization rate increases with age, from 17.1 (1-17 years old) to 455.7 (85+) per
1,000 population (Freeman, Weiss, and Heslin, 2018; Rosenberg et al., 2016),
the hospitalization costs will continue to skyrocket with an aging popula-
tion. Moreover, only 20% of an individual’s health is attributable to access
to healthcare, whereas 80% to the remaining components of social determi-
nants of health: physical environment, socio-economic factors, and lifestyle
choices (American Hospital Association (ICSI, 2004)). It is thus imperative to
leverage new data, beyond the conventional patient data available to health-
care professionals, and develop new tools to understand factors that predict
individual health risk, reduce hospitalization rate, and promote population
health.

A variety of literature empirically investigated the importance of the fac-
tors beyond the clinical wall on health outcomes. Diet, smoking cessation,
exercise, and sleep are shown to critically improve life expectancy and reduce
hospitalization costs (cf. (Chen, Tan, and Padman, 2020) for a recent review).
Up to one-third of premature deaths in the U.S. arise from conditions modi-
fiable via lifestyle choices (Loewenstein, Brennan, and Volpp, 2007). Socioe-
conomic factors, such as income and education, are associated with life ex-
pectancy with the greatest disparities occurring in the mid-adulthood (Greer
et al., 2014). These studies primarily rely on identification of social deter-
minants of health from electronic health records (EHR), medical claims, and
individual surveys. Deviating from the status quo, this research examines the
associations between health outcomes and individual’s social determinants
of health by leveraging atomic, longitudinal individual smartphone location
data.

3.1.2 Location Data

Identifying social determinants of health from mobile location data presents
several significant advantages over conventional data sources. First, mobile
location data are straightforward to collect, merely an app permission away,
tracked in the background in most mobile ecosystems, and readily accessible
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72 Chapter 3. Social Determinants of Health

to data users. Sustained data collection also requires little to no effort from an
individual or data user, compared to a hospital visit or medical claim filing.
Second, mobile location data offer an extensive, spatio-temporal profile of
an individual by delineating day-to-day behavior, mobility, lifestyle choices,
and social relations (Ghose, Li, and Liu, 2018). Meanwhile, these data embed
rich points-of-interests (POIs), such as restaurants, gyms, pharmacies, and
hospitals, home and work locations (Macha et al., 2019). Third, mobile loca-
tion data portray a much richer context than EHR, such as the longer-term
precursors (i.e., locations visited and behaviors before) and aftermath of a
hospital visit. Fourth, mobile location information can help fill any data void
(e.g., when no EHR or health insurance is available for a first-time patient)
or verify survey responses. Fifth, mobile location data permit continuous
monitoring of social determinants of health, thus facilitating adaptive inter-
ventions to mitigate future health risk (Wachs et al., 2015). In a nutshell,
we aim to propose a framework to identify the social determinants of health
from these behaviorally rich individual location data and empirically quan-
tify their association with future health outcomes of immense economic and
societal values.

3.1.3 Research Gap

Studies across disciplines have aimed to understand individual behavior from
location data – characterizing mobility patterns (Gonzalez, Hidalgo, and Barabasi,
2008), social ties (Morse, Gonzalez, and Markuzon, 2016; Eagle, Pentland,
and Lazer, 2009), and shopping patterns (Hu et al., 2016). While most be-
havioral patterns have been leveraged for advertising (Molitor et al., 2019),
their relationship with health outcomes is receiving increased attention. On
one hand, researchers primarily from Computer Science focus on identify-
ing macro representations of an individual’s subset of daily activities with-
out linking to long-term health risk (Logan et al., 2007; Farrahi and Gatica-
Perez, 2011; Sun et al., 2014). On the other, the medical community exam-
ines health outcomes, such as depression, saeb2015mobile, schizophrenia
symptoms (Ben-Zeev et al., 2014) and other standard clinical measurements
(Robben, Pol, and Kröse, 2014), by analyzing micro activities, such as sleep
patterns, gait, and activity rhythms. Both literature rely on sensor data from
fewer than 200 individuals.

In comparison, our research is distinctive on multiple fronts. We extract
a comprehensive range of behavioral patterns, including work, leisure, com-
mute, and fitness, to capture "lifestyle", defined in sociology and marketing
as "an activity that exhibits a pattern of behavior, consumption or leisure"
(Cockerham, Abel, and Lüschen, 1993). We further integrate these macro
representations of lifestyle with micro-level features inferred from the loca-
tion data, such as accessibility to healthcare facilities and socioeconomic sta-
tus, to construct an extensive profile of an individual’s social determinants
of health. We then quantify the link between these determinants and a key
health outcome - hospitalization. Our examination of the population-scale
data also permits empirical generalization and policy guidance.
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3.1.4 Overview of Proposed Methodology

We summarize the proposed framework that comprises two key components:
Identification of social determinants and Health risk quantification.
Social Determinants : To identify individual lifestyles, we build on unsu-
pervised topic models. Topic models are generative models that represent
documents as mixtures of topics, learned in a latent space, and allow for
clustering and ranking of documents, words, and other entities, like authors.
We identify 16 activity groups (Table 3.1) grounded in sociologist’s defini-
tion of routine and leverage Author Topic Models (ATM). In ATM, we map
the concept of word to an activity combined with a temporal context ( e.g.,
a restaurant visit during 9 - 11 AM as restaurant.911); document to a bag of
activities in a day, individual to an author and successfully identify author-
specific macro activity patterns across multiple days – routines. Further, from
location data, we identify home, work locations of an individual, to infer their
neighborhood economic stability, social community context, accessibility to
resources, and socio-economic factors. (Table 3.2)

Health Risk Quantification : To study if the identified characteristics sig-
nal health events, we designate the individual’s health event based on their
hospital visits in the near future. We perform a model-free analysis to infer
population-level association of individual routines with future health events.
To quantify the importance of identified individual characteristics in relation
to future health, we specify a logit model. Finally, to quantify the health risk,
we build on the concepts of multi-modal and sequential deep learning to
unify multiple types (refer to Table 3.2 for the full set) of individual charac-
teristics – time varying categorical (e.g. routines), numerical (e.g. frequency
of restaurant visits) and static categorical (e.g. workplace of the individual),
numerical (e.g. average household income of the census block where the in-
dividual lives in) and predict the health event for each individual.We validate
our proposed method on locations of over 10,000 individuals from Baltimore
and D.C. over four months in 2019.

3.1.5 Key Findings

For Baltimore residents, the lifestyle identification reveals that while as ex-
pected the weekday (weekend) lifestyle is primarily characterized by work
(home) routines, heterogeneous lifestyles, such as workaholics and fitness
regulars, do emerge. For instance, we find that individuals with a late work-
ing routine are more likely to consume at restaurants during the night (9 -
11 PM) in contrast to early working routine individuals who prefer going to
restaurants during afternoon (2 - 5 PM). Individuals with constant work, lim-
ited fitness, or stay at home on weekdays are 2.01 and 1.47 times more likely
to have a future hospitalization within the next year compared to average
(2.45%). In contrast, those who conduct fitness on weekends or weekdays
are much less likely (0.52 and 0.65 times, respectively) to have a hospitaliza-
tion. Interestingly and importantly, regularity, rather than total time spent at
healthy activities and unhealthy activities, significantly predicts future hos-
pitalization. Overall, an individual’s lifestyle choice is more critical than the
socio-economic and accessibility factors.
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74 Chapter 3. Social Determinants of Health

Finally, to quantify the health risk, we jointly represent the multiple facets
of an individual’s social determinants and develop a sequential deep learner
to predict future hospitalization. The proposed learner, dealing with a huge
class imbalance (2.45 % on average are hospitalized) achieves a PR AUC and
ROC AUC of 0.28 and 0.85 respectively. From an ablation study of the pro-
posed learner and several baselines, we confirm that individual behavioral
features, such as lifestyles and day-to-day activities, significantly contribute
to the predictive performance for both Baltimore (16.6% increase in PR AUC)
and D.C. residents (30% increase). These findings remain consistent across
the proposed learner and considered baselines.

The rest of the manuscript is organized as follows. In Section 3.2, we
review literature from various disciplines that are relevant to our research
questions. Section 3.3 describes the details of the proposed framework. In
Section 3.4, we provide details of our sampling and summary statistics of the
mobile location data under analysis. In Section 3.5, we discuss the empiri-
cal results and advantages of the proposed framework. We offer concluding
remarks in Section 3.6.

3.2 Related Work

We will concisely review the most relevant Marketing, Management, Infor-
mation Systems (IS), Computer Science (CS) and Medical literature on indi-
vidual routines, lower level activity recognition and their impact, associa-
tions with health events.

3.2.1 Behavioral Routine and Activities:

We break down this stream based on the type of data used in the study.

Smartphone Data

Researchers, primarily from the CS community developed several machine
learning techniques to recognize low-level individual activities (e.g., sitting,
standing, or walking) and high-level activities, often referred to as lifestyles
or routines, (e.g., eating at a restaurant, taking a subway) from various types
of sensor data collected from smartphones. While some of these methods
are supervised (Bao and Intille, 2004; Logan et al., 2007), due to the practi-
cal limitation of acquiring labeled data for activities, a majority of the recent
focus has shifted towards unsupervised methods (Eagle and Pentland, 2009;
Farrahi and Gatica-Perez, 2011; Huynh, Fritz, and Schiele, 2008; Sun et al.,
2014; Zheng and Ni, 2012). (Eagle and Pentland, 2009) use principal com-
ponent analysis (PCA), a dimensionality reduction technique, to obtain main
components that construct human daily routines. However, the resulting
eigenvectors cannot be mapped to a specific activity of an individual (lesser
interpretability) and do not capture the temporal nature of individual activ-
ities. (Huynh, Fritz, and Schiele, 2008) discover daily routines from wear-
able sensor data using K-means clustering to build activity vocabulary in-
volving activities such as dinner, commuting, office and use LDA to identify
routines. (Farrahi and Gatica-Perez, 2011) apply LDA and ATM on labeled
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cell tower data to automatically discover routines, including “being at work"
or “going home from work". (Zheng and Ni, 2012) propose a probabilistic
generative model for learning individuals’ latent behavior patterns based on
unlabeled cell tower data. (Sun et al., 2014) develop a non-parametric frame-
work for human routine discovery using a combination of the Dirichlet Pro-
cess Mixture Model (DPMM) and Hierarchical Dirichlet Process (HDP). This
sub-stream of literature limit their focus to a subset of an individual’s daily
activities (such as work or shopping patterns) and do not analyze potential
long-term health signals from the identified representations.

Surveys and Health Records

Several other measures of routines have been developed in the medical liter-
ature via surveys or individual health records (Guenther, Reedy, and Krebs-
Smith, 2008; Chiuve et al., 2012; Joumard et al., 2010). These measures are
based on smoking cessations, physical activity, diet quality, alcohol consump-
tion and body weight. Healthy Eating Index-2015 (HEI-2015), computed
based on individual surveys is a measure for assessing whether a set of foods
aligns with the Dietary Guidelines for Americans (DGA). Alternatives to HEI
with stronger correlations to chronic diseases was proposed by (Chiuve et
al., 2012). Acquiring longitudinal measures of such nature - for instance, via
surveys, would require frequent interaction with individuals making them
less practical than smartphone data based inference. Next, we discuss works
that study associations and impact of behavioral routines, activities on future
health events.

3.2.2 Behavior as Health Determinants:

Individual behavior, measured as dietary, alcohol and tobacco consumption
have been studied to determine health status of a population (Joumard et al.,
2010). Impact of of lifestyle factors, determined by physical activity, high di-
etary score AHEI-2010 (Chiuve et al., 2012) on premature mortality was stud-
ied by (Li et al., 2018). The study revealed that the projected life expectancy at
age 50 years was on average 14 years longer among female Americans with
5 low-risk routine factors (moderate to vigorous physical activity, moderate
alcohol intake, and a high diet quality score) compared with those with zero
low-risk factors; for men, the difference was 12.2 years. Other factors such as
health care resources (Miller and Frech, 2002), socio-economic factors (Nixon
and Ulmann, 2006) have been studied to impact health outcomes of a popu-
lation. This stream of study primarily rely on data from surveys, electronic
health records, medical claims differing from our work involving location
data.

Prior studies have associated sensor measurements of sleep patterns, gait,
activity rhythms, indoor activities and outings, and mobility with standard
clinical measurements and survey data. (Paavilainen et al., 2005) compares
changes in the circadian rhythm of day to day activities of older adults liv-
ing in nursing homes with clinical health measurements. Mobility metrics
derived from location data have been used to describe the patterns of behav-
ior and subjective experience associated with depressive symptoms (Saeb et

DocuSign Envelope ID: F8C86E15-F703-4BF7-9D1C-0466EF7A90C2



76 Chapter 3. Social Determinants of Health

al., 2015), and mood patterns associated with schizophrenia symptoms (Ben-
Zeev et al., 2014). (Robben et al., 2012; Robben, Pol, and Kröse, 2014) study
relationship between location and transition patterns of an individual’s in-
door mobility behavior, namely the frequency, duration and times being car-
ried out, with the Assessment of Motor and Process Skills (AMPS) scores
(Fisher and Jones, 2012). Other works have explored the relationship be-
tween walking speed and the amount of in-home activity among healthy
older adults and older adults with Mild Cognitive Impairment (MCI) (Hayes
et al., 2008). This study revealed that the coefficient of variation in median
walking speed was higher in for adults with MCI group when compared to
healthy individuals. Wearable sensor data was used to infer physical activity
in patients with knee osteoarthritis (Agarwal et al., 2018). (Dawadi, Cook,
and Schmitter-Edgecombe, 2016) introduces the notion of an activity curve,
which represents a visual abstraction of an individual’s routines and devel-
ops a technique to detect changes in routines and perform health assessment.
Our work complements this line of literature by identifying and associating
routines with future health outcomes from individual location data. In addi-
tion, we also present a sequential deep learner to quantify individual health
risk. The quantification is based on multiple facets of an individual day-day
behaviour comprising of routines, mobility and socio-economic factors. To
the best of our knowledge, we are not aware of other works that involve
prediction of future health events from location data.

3.3 Framework

The primary objectives of our framework are two-fold. First is to identify
an individual’s social determinants of health from the location data: such as
lifestyles, socioeconomic status, and accessibility to various resources. Sec-
ond is to quantify the relationship between these determinants and individ-
ual health risk. We will introduce the relevant notations next.

Definition 7 (Trajectory) A trajectory Ti of an individual i is defined as a tem-
porally ordered set of tuples Ti = {(li

1, ti
1), ..., (li

ni
, ti

ni
)}, where li

j = (xi
j, yi

j) is a
location where xi

j and yi
j are the coordinates of the geographic location1, and ti

j is the
corresponding time stamp.

Definition 8 (Activity-Trajectory) An activity trajectory Di of an individual i is
defined as mapping Ti to activities that exhibit a pattern of behavior, consumption,
leisure. Di is a temporally ordered set of tuples Di = {di

1, , ..., di
ni
}, di

j = (ai
j, ci

j),
where ai

j = act(li
j), li

j ∈ Ti is an activity by the individual inferred from a location
closest to xi

j and yi
j, and ci

j is a coarser timestamp2 of ti
j. Also, denote W as the

universe of all temporal activities di
j across Di.

Definition 9 (Routine) A routine Li of an individual i is defined as a set of activ-
ities and their corresponding timestamps Li = {di

1, di
2, ..., di

Y}, di
j = (ai

j, ci
j) ∈ W,

1Coordinates usually correspond to latitude and longitude.
2For instance, ti

j = 9:33 AM is coarsened and represented as 9 - 11 AM.
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|Li| = Y that globally represent an individual’s day to day temporal activities across
Ti.

Next, we illustrate the transformation of individual trajectories (Ti) to ac-
tivity trajectories (Di) (Section 3.3.1) and detail the identification of lifestyles
(Li, Section 3.3.2). In Section 3.3.3, we discuss the remaining social determi-
nants and our learner to quantify health risk. We present model-free analysis
to understand if lifestyles signal future hospitalizations and discuss the per-
formance of the proposed learner in predicting them in Section 3.5.

Activity
group

Place type of location

hospital hospital, doctor
health physiotherapist, pharmacy, dentist, drugstore

ncessityshopping
store, supermarket, convenience_store, home_goods_store,

grocery_or_supermarket, hardware_store
fitness gym

publictransport
transit_station, train_station, bus_station, light_rail_station,

subway_station
owntransport car_wash, car_repair, parking, gas_station, taxi_stand

religious church, mosque, hindu_temple, synagogue

recreation
amusement_park, tourist_attraction, zoo, park, theatre,

sports_stadium, concert, bowling_alley, art_gallery, aquarium,
museum, movie_rental, book_store, library, movie_theater, campground

travel hotel, lodging, rv
personalcare beauty_salon, spa, hair_care

leisureshopping
clothing_store, department_store, shopping_mall, shoe_store,

electronics_store, furniture_store
unhealthyactivities casino, liquor_store, bar, night_club, cigarette

restaurant restaurant, food, meal, bakery, cafe, meal_delivery, meal_takeaway
home highest dwell time location from 3 - 5 AM of an individual

work
highest dwell non-home location from 8 AM - 6 PM,

6 PM - 11 PM, 11 PM - 3 AM.

TABLE 3.1: Activity groups

3.3.1 Locations to Activity Trajectories

Prior studies have used sensor data to study association of micro activities,
such as daily sleep patterns, gait, and activity rhythms, with health (Saeb et
al., 2015; Robben, Pol, and Kröse, 2014). Our mapping of individuals’ loca-
tions to POI categories, such as restaurants and groceries, opens up a new
realm of possibilities to study both macro and micro patterns of an individ-
ual. For instance, macro movement and temporal patterns across competing
brands inferred from such mapping were used to decide the placement of a
new franchise. Further, micro, day-to-day individual-specific patterns such
as number of visits, time spent at various business types can predict the in-
dividual’s next likely location (Molitor et al., 2019).

To identify individual lifestyles, we map the locations to POI categories by
using Google Places API3(second column of Table 3.1) and use the SafeGraph
definitions of work to define home, work, full-time, and part-time work 4. Next,
we group POI categories with similar semantics (first column in Table 3.1) to

3POIs can be readily identified by matching the longitudes/latitudes using Google Places API
https://developers.google.com/places/web-service/supported_types

4Social Distancing Metrics Schema by SafeGraph https://docs.safegraph.com/docs/
social-distancing-metrics
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form 15 activity groups that form the universe of all activities ai
j. Further, to

abstract away variations of the exact time in day-to-day activities, a coarser
timestamp of ti

j (timestamp associated with an individual’s location), ci
j is

associated with each activity : 12 - 2 AM, 3 - 5 AM, 5 - 7 AM, 7 - 9 AM, 9 - 11
AM, 11 - 2 PM, 2 - 5 PM, 5 - 7 PM, 7 - 9 PM, 9 - 12 PM. The resulting tuples of
di

j = (ai
j, ci

j) across individual trajectories form the universe (W as defined in
Def. 8) of temporal activities di

j.

3.3.2 Lifestyle Identification

Automatic discovery of individual lifestyles from location data is a non-
trivial problem given the massive scale and high dimensionality. Besides,
the differences in an individual’s activities across days, and the differences
from other individuals’ activities add further complexity. We take an un-
supervised topic modeling approach that has shown potential for uncover-
ing complex temporal and behavioral patterns to identify work, home, and
consumption routines (Sun et al., 2014; Farrahi and Gatica-Perez, 2011) on
smaller location data sets. Specifically, we leverage the concept of proba-
bilistic Author Topic Model (ATM), designed for text documents (Rosen-Zvi
et al., 2012) to model an individual’s day-to-day activities. Leveraging the
granular location data, we extend this line of literature by incorporating an
extensive set of 15 POI or activity types to represent an individual’s lifestyle.

                              

                              

Choose	an
author

Choose	a	topic
given	the
author

Choose	a	word
given	the	topic

FIGURE 3.1: Probabilistic Graphical model of Author Topic Model
using plate notation.

Author Topic Model:

LDA is a probabilistic, unsupervised learning model of a bag of words and
of hidden discrete variables called topics. For text modelling, we may view
each document as a mixture of various topics, where each topic is character-
ized as a distribution over words. ATM (Rosen-Zvi et al., 2012) subsumes
LDA and assumes authors of documents represent a multinomial distribu-
tion over topics where each topic is a probability distribution over words.
A document with multiple authors has a distribution over topics that is a
mixture of the distributions associated with the authors. When generating a
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document, an author is chosen at random for an individual word in the docu-
ment. This author picks a topic from their multinomial distribution over top-
ics and then samples a word from the multinomial distribution over words
associated with that topic. This process is repeated for all words in the doc-
ument. Formally, the probability of a word wt assuming K topics, A authors,
D documents and W unique words is: P(wt) = ∑K

k=1 P(wt|zt = k)P(zt = k)
where zt is a latent variable showing the topic from which the tth word is
drawn. The aim of ATM inference is to determine the word distribution
P(w|z = k) = φ

(k)
w for each topic k and the distribution of topics for au-

thors P(a = k) = θ
(a)
k for each author a. P(θ) is a Dirichlet(α) and P(φ) is

a Dirichlet(β), where α and β are hyper-parameters. Gibbs approximation
proposed in (Rosen-Zvi et al., 2012) can be used to estimate these as

φ
(w)
k =

n(w)
k + β

n(.)
k + Wβ

; θ
(a)
k =

n(a)
k + α

n(a)
. + Kα

(3.1)

where n(w)
k and n(a)

k are the number of times word w and author a have

been assigned to topic k, respectively. Similarly, n(.)
k = ∑1:W n(w)

k , n(a)
. =

∑1:K n(a)
k are the word-topic and author-topic sum, respectively. Next, we

detail our ATM-based lifestyle identification from the individual activity tra-
jectories (Di).

Activity trajectories to Lifestyles:

To identify lifestyles, we make an analogy between text documents and day-
to-day activities, authors, and individuals. We view each activity dj

i in Di, the
mapped activity trajectory as a word w. We represent each day’s activities of
an individual (author) as a bag of words – document d. We view activities
across multiple days of an individual i as unique documents of an author

a. Based on these, we estimate the two ATM model parameters φ
(dj

i)

k , θ
(i)
k

using Eq. 3.7 which represents the probability of activity for each topic k,
and the probability of topics k for an individual i, respectively. Given these
probability distributions, we can rank activities for each topic (i.e., lifestyle)
discovered. We can also rank topics for individuals which we view as their
primary lifestyles.

We represent each lifestyle as the top Y activities ranked by their relevance
(Sievert and Shirley, 2014) – a convex combination of topic-specific probabil-
ity of each activity (first term in Eq. 3.2) and lift (second term in Eq. 3.2, pdj

is the empirical distribution of activity dj).

r(dj) = λlog(φ
dj
k ) + (1− λ)log

φ
dj
k

pdj

(3.2)

Next, we assign the most probable topic from the estimated author-topic dis-
tribution θi

k as the primary lifestyle of an individual. Combining this with
the top Y activities ranked by relevance, we can represent an individual i’s
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lifestyle as Li = {(di
1, di

2, ..., di
Y)}, dj ∈W. This completes the identification of

the individual’s lifestyle Li from Ti. We augment these macro representations
with other facets of social determinants extracted from location data that cap-
ture the micro day-to-day activities, accessibility to various resources, and
socio-economics of an individual’s neighborhood.

3.3.3 Other Social Determinants

In Table 3.2, we describe different facets of individual social determinants ex-
tracted from the location data and the proxies used to indicate an individual’s
health outcome - hospitalization. To construct these, we glean through the
literature on the prediction of health outcomes from medical claims (García-
Olmos et al., 2019) or EHR data (Hilton et al., 2020) across disciplines and
make necessary adaptations to compute them from the individual location
data. These features also form the input and output of our prediction model
detailed later.
1) Lifestyles: We identify individual weekday and weekend lifestyles from
their respective activity trajectories using the above ATM.
2) Activity: While lifestyles capture an individual’s global routines, the be-
haviorally rich location data also enable us to capture the day-to-day micro
activities. We leverage the transformed activity trajectories Di (as defined in
Def. 8) to compute an individual’s daily visit frequencies and dwell time for
each of the 15 activity groups ai

j as additional dynamic, numerical individual
features.
3) Mobility: Mobility metrics have been shown associated with health out-
comes (Saeb et al., 2015). They capture an individual’s daily mobility pat-
terns based on the locations visited in Ti, such as the individual’s frequency
to, time spent at (Pappalardo, Rinzivillo, and Simini, 2016), and distance trav-
eled to a location (Williams et al., 2015). We also compute other richer mobil-
ity metrics, such as entropy and radius of gyration (Gonzalez, Hidalgo, and
Barabasi, 2008). All these are daily, dynamic, numerical, individual level fea-
tures.
4) Accessibility: Recent studies leveraging medical data also reveal the im-
portance of neighborhood social demographics in predicting patient re-admission
and length of stay (Hilton et al., 2020). We hence leverage the transformed
activity trajectory (Di) and compute individual accessibility - the closest dis-
tance to various resources, such as hospitals, parks, fitness centers, pharma-
cies, public transport, and work from individual’s home location. All these
are static (time-invariant), numerical, individual level features.
5) Socio-economics: Based on the individual’s home location from the trans-
formed activity trajectories and publicly available Census data5, we also com-
pute several census block level socio-economic factors as in (Hilton et al.,
2020). These are static and comprise of both categorical (employment_type
- part-time/full-time/nowork) and numerical features (population of individ-
ual’s census block).
6) Hospitalization: To identify if an individual has a future hospitalization,

5We obtain the Census Block Group (CBG) level data from SafeGraph: https://docs.safegraph.
com/docs/open-census-data#section-censusdemographic-data.
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we overlay the day-to-day location trajectories on the publicly available lo-
cation repositories of medical facilities. Specifically, we use the public data
sets of hospitals, emergency medical services, and urgent care facilities from
Homeland Infrastructure Foundation Level Data (HIFLD)6. Based on the over-
laid data of medical facilities, we construct proxies to indicate the occurrence
of individual’s hospitalization event. Specifically,we assign an individual’s
hospitalization = 1 in an observation period, if the individual, whose work
location is not at a medical facility, has at least 4 hours of activity at a medical
facility – two of which occur during late night (12 AM - 5 AM) and the other
two during 5 AM - 12 AM. We further assign hospitalization_night = 1 if an
individual has spent at least two late night hours at a medical facility (12 AM
- 5 AM).

3.3.4 Health Risk Quantification

Our quantification of an individual’s healthcare risk hinges on learning a
model from the location data to accurately predict the future health out-
come, hospitalization in our empirical study. We perform both model-free
and Logit Regression analyses; and find consistent, qualitative (Figures 3.7b,
3.7d) and quantitative (Table 3.6) evidence that different lifestyles leads to
heterogeneous rates of hospitalization.

Modelling Hospitalization

Multiple types of (dynamic, static, categorical, numerical) individual fea-
tures (Table 3.2) can capture multi-faceted social determinants, but also entail
modeling challenges, such as the need to jointly represent all feature types,
account for feature interactions, and concatenate features strategically to cir-
cumvent a sub-optimal predictive model. We address these challenges by
separately learning the representations of the dynamic and static features
that account for the interactions among different types of features. Next, we
combine these, allowing for the interactions among the two representations,
to learn a final joint representation of all the features. To achieve this, we
represent the dynamic features by a Context-LSTM (CLSTM) cell proposed
by (Ghosh et al., 2016), a modification of the traditional LSTM cell, widely
used for word translation and time series modelling. CLSTM incorporates
both dynamic and static contextual features to a time series. In (Ghosh et al.,
2016), the dynamic contextual features are the latent topics that are jointly
represented with words; and each word of the time series is concatenated
with an embedding of the topic to predict the next likely word in a sentence.
Extending this to our setting, lifestyles (Lifestyle features in Table 3.2) are
latent topics learned from different activities and serve as a context to the
activity-related dynamic features (Activity in Table 3.2). Viewing lifestyles
as a context to the other dynamic features (Mobility in Table 3.2) also leads

6The latitudes and longitudes of hospitals, emergency medical services, and urgent care reported
by state and federal resources are available at https://hifld-geoplatform.opendata.arcgis.com/
datasets/
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to better predictions7. Next, we concatenate these representations for a given
time period with the embeddings of the static categorical and numerical fea-
tures (Social Demographics and Accessibility) to jointly learn the represen-
tation of all features to predict an individual’s future hospitalization. Such
concatenations of multiple views of an individual’s features to form a unified
representations are widely studied in multi-modal learning (cf. (Ramachan-
dram and Taylor, 2017) for a review).

Lifestyles
(Time varying
categorical)

Embedding

Activity and
Mobility (Time var.

numerical)

Concatenate

CLSTM layer Concatenate Health risk

Static, categorical
features Embedding

Static, numerical 
features

FIGURE 3.2: Architecture diagram of the proposed learner.

An overview of the architecture diagram of the proposed sequential deep
learning model is presented in Figure 3.2. The blue box in the figure illus-
trates the modelling of an individual’s temporal features at a day-level with
a CLSTM cell (multiple days as a CLSTM layer), where the lifestyle serves as
a context for the activity and mobility features. The green box shows the rep-
resentations of the individual’s static features, which are later concatenated
with the temporal representations to predict the individual’s hospitalization.
Next, we formally detail the transformations performed by various layers
(non-blue boxes in Figure 3.2) in the proposed learner.

Proposed Learner

Let XTN denote the dynamic numerical feature tensor (number of users ×
number of days in the observation period × number of dynamic numerical
features), XTC the dynamic categorical feature tensor (number of users ×
number of weeks8 × number of dynamic categorical features), matrices XSN
and XSC (number of users × number of categorical/numerical features) the
static numerical, categorical individual features, respectively. To simplify the
notation, in the following discussion, we will focus on a single individual’s
features denoted by xTC, xTN, xSC, and xSC and their transformation to the
probability of future hospitalization (i.e., the health risk).
1) Embedding: Embedding layers transforms one-hot encoded categorical
features (xTC, xSC) to a continuous vector representation of a fixed dimension.
Formally,

eTC = xTCWe
TC; eSC = xTCWe

SC (3.3)

7This is not surprising since an individual’s lifestyle is likely correlated with his/her daily mobility
behavior and hence a better predictor of his/her health outcome when we explicitly factor in both the
lifestyle and mobility behavior.

8Lifestyles are the only dynamic categorical features (weekday/weekend). Both dynamic and static
categorical features are encoded using a one-hot encoding scheme.
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Feature grouping Name Definition Time Varying
Baltimore D.C.

Mean Std. Dev. Min Max Mean Std. Dev. Min Max

Lifestyle lifestyle Weekend and weekday lifestyle 3 Refer Figure 3.5, 3.6 Refer Figure B.1, B.2

Activity

home_freq
Daily frequency & dwell time at individual home

3 5.99 17.1 1 249 5.93 18.0 1 237
home_dwell 3 1.68 2.80 0 24 1.55 2.82 0 24
health_freq

Daily frequency & dwell time at health activity
3 1.42 7.14 0 183 1.07 6.06 0 232

health_dwell 3 0.43 1.42 0 13.49 0.33 1.13 0 12.17
necessityshopping_freq

Daily frequency & dwell time at necessity shopping
3 1.72 8.07 0 216 1.46 7.29 0 215

necessityshopping_dwell 3 0.59 1.58 0 7.79 0.43 1.30 0 6.83
publictransport_freq

Daily frequency & dwell time at public transport
3 1.26 6.31 0 238 2.35 10.2 0 229

publictransport_dwell 3 0.48 1.34 0 6.85 0.71 1.80 0 6.89
religious_freq

Daily frequency & dwell time at religious places
3 0.73 4.82 0 162 0.591 4.39 0 198

religious_dwell 3 0.26 1.07 0 5.53 0.19 0.875 0 4.39
work_freq

Daily frequency & dwell time at work
3 3.21 8.67 0 233 4.20 10.3 0 192

work_dwell 3 1.32 2.36 0 24 1.26 2.64 0 24
hospital_freq

Daily frequency & dwell time at hospitals
3 0.13 2.20 0 164 0.08 2.13 0 156

hospital_dwell 3 0.04 0.43 0 24 0.02 0.24 0 24
personalcare_freq

Daily frequency & dwell time at personal care
3 0.30 3.47 0 208 0.281 2.97 0 161

personalcare_dwell 3 0.09 0.59 0 2.55 0.08 0.55 0 1.96
restaurant_freq

Daily frequency & dwell time at restaurants
3 0.78 4.22 0 145 1.32 5.90 0 177

restaurant_dwell 3 0.27 0.83 0 3.92 0.41 1.07 0 4.21
unhealthyactivites_freq

Daily frequency & dwell time at unhealthy activities
3 0.16 2.21 0 140 0.15 0.87 0 162

unhealthyactivities_dwell 3 0.04 0.39 0 4.32 0.02 0.22 0 12.6
leisureshopping_freq

Daily frequency & dwell time at leisure shopping
3 0.26 2.45 0 149 0.28 2.40 0 173

leisureshopping_dwell 3 0.10 0.59 0 4.91 0.09 0.54 0 5.88
hotel_freq

Daily frequency & dwell time at hotels
3 0.32 2.68 0 122 0.59 3.92 0 143

hotel_dwell 3 0.04 0.46 0 24 0.05 0.31 0 24
owntransport_freq

Daily frequency & dwell time in own transport
3 0.24 2.89 0 167 0.41 3.77 0 227

owntransport_dwell 3 0.12 0.63 0 24 0.11 0.60 0 24

Mobility

n_locations Number locations in a day 3 22.2 40.4 3 1585 23.1 42.7 3 1807
avg_distance Average distance traveled in a day (km.) 3 7.42 6.70 0 126 7.59 7.54 0 170

avg_location_entropy Shannon entropy of frequency of visits 3 1.90 1.11 0 1 1.84 1.16 0 5.87
avg_time_entropy Shannon entropy of dwell time at locations 3 1.68 1.17 0 5.46 1.58 1.18 0 5.47

n_unique_locations Number of unique locations in a day 3 7.6 15.7 1 573 8.94 18.6 1 417
avg_time_spent Average time spent at locations (in hours) 3 4.20 3.64 0 24 4.08 3.61 0.06 24

avg_rog Average radius of gyration from home (in km.) 3 6.11 4.28 0 125.1 6.21 4.71 0 132.1
avg_speed Average speed during the day (kmph) 3 6.92 10.57 0 129 6.51 11.80 0 134

Accessibility

hospital_access Distance from home to closest hospital (km.) 7 1.63 0.84 0.02 2.62 1.58 0.89 0.21 4.1
park_access Distance from home to closest park 7 0.40 0.29 0.04 2.67 1.24 0.21 0.03 4.62

fitness_access Distance to closest fitness facility 7 0.55 0.37 0.02 2.04 0.76 0.42 0.03 2.91
prescription_access Distance to closest pharmacy 7 0.45 0.28 0.02 2.05 0.61 1.25 0.02 2.69

commute_access Distance to closest commute 7 0.15 0.13 0.02 3.05 0.23 0.18 0.02 2.92
work_access Distance from home to work 7 1.90 3.34 0 39.4 1.86 3.37 0 41.1

Social
Demographics

employment_type Employment type of individual 7 - - - - - - - -
employment_percent Employment % in individual’s census block group (cbg) 7 0.82 0.09 0.44 1 0.85 0.09 0.59 1

health_ins_percent Health insurance % in individual’s cbg 7 0.99 0.04 0 1 0.98 0.04 0.07 1
population Population in individual’s cbg 7 1145 561 3 4696 1551 862 8 5254

household_income Average household income in cbg 7 58321 31951 8654 250000 94193 50226 10278 250000
median_age Median age in individual’s cbg 7 37.4 9.30 10.8 79.9 35.7 7.53 18.9 73.8
gross_rent Gross rent in individual’s cbg 7 240 241 0 1384 395 246 0 2082

Health Outcome
hospitalization

An indicator if an individual
spent 4 hours in a day at a medical facility

(2 during 5AM - 12 AM, 2 during 12 AM - 5 AM)
7 0.024 0.15 0 1 0.026 0.16 0 1

hospitalization_night
An indicator if an individual

spent two late night hours (12 AM - 5 AM)
7 0.028 0.16 0 1 0.029 0.17 0 1

TABLE 3.2: Definition and Summary Statistics of Social Determinants
and Health Events
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where We
TC – number of dynamic categorical features × Ne

TC, We
SC – number

of static categorical features × Ne
SC are the learnable weight parameters, Ne

TC
Ne

SC are tune-able model hyper-parameters. Recall that in our setting, XTC
comprises of weekday and weekend lifestyles (Li), both represented by top
ten relevant activities (di

j, universe of activities W). Hence, an individual’s
weekday and weekend lifestyle can both be represented as a vectors of length
|W|; that is, we learn two weight matrices of dimensionality |W| × Ne

TC to
compute eTC. A similar procedure is followed to transform the other static
categorical features (employment_type).

CLSTM CLSTM CLSTM CLSTM CLSTM

Day-day temporal attributes

Static attributes

CLSTM layer Concatenate

FIGURE 3.3: Illustrations of CLSTM and Concatenate layers.

2) CLSTM layer: CLSTM layer (illustrated in Figure 3.3) comprises of
multiple CLSTM cells, each of which acts on different days of the xTN,eTC.
Assume xt

TN,et
TC correspond to all numerical, embedded categorical dynamic

features (contexts as defined in (Ghosh et al., 2016)) on an arbitrary day9, each
CLSTM cell performs the following transformations:

it = σ(WiTCet
TC + WiTNxt

TN + Wihht−1 + bi)

f t = σ(W f TCet
TC + W f TNxt

TN + W f hht−1 + b f )

ot = σ(WoTCet
TC + WoTNxt

TN + Wohht−1 + bo)

ct = f t ∗ ct−1 + it ∗ tanh(WcTCet
TC + WcTNxt

TN + Wchht−1 + bc)

ht = ot ∗ tanh(ct)

(3.4)

The above four equations detail modifications of the traditional LSTM cell
where i, f and o are the input, output, and forget gates, respectively, to incor-
porate additional context et

TC. After rearranging the terms, this is equivalent
to considering a composite input [xt

TN et
TC]. since

it = σ([WiTC WiTN Wih 1][et
TC xt

TN ht−1 bi]T)

f t = σ([W f TC W f TN W f h 1][et
TC xt

TN ht−1 b f ]T)

ot = σ([WoTN WoTC Woh 1][et
TC xt

TN ht−1 bo]
T)

ct = f t ∗ ct−1 + it ∗ tanh([WcTC WcTN Wch 1][et
TC xt

TN ht−1 bc]
T)

ht = ot ∗ tanh(ct)

(3.5)

9et
TC is computed depending on whether the day is a weekday or weekend, since our lifestyles are

derived for weekday/weekend rather than days.
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Each CLSTM cell transforms the concatenated input [et
TC xt

TN] into a hidden
representation ht (dimensions : number of individuals × Ne

T) with learnable
shared10 weight and bias parameters (W∗, b∗) and tune-able hyper-parameter
Ne

T. Hence, the resulting representations from the CLSTM layer are {ht}, t ∈
[1, T], where T is the number of days in our observation period.
3) Concatenate: Concatenate layers do not contain any learnable parame-
ters and are simply used to combine different intermediate representations.
We perform two concatenations, [xt

TN et
TC] as illustrated in Figure 3.3). Sec-

ond, the concatenation of the hidden temporal representation obtained from
the CLSTM layer ({ht}), embedded static (eSC) and numerical features (xSN).
Noting that hT, the hidden layer representation of the last day of observation
captures temporal relations across the preceding days due to the recurrence
nature of Equations 3.5, we combine this with eSC, xSN to form [hT eSC xSN],
the final joint representation which comprises of both the dynamic and static
features.
4) Health risk: We pass on the final representation into a fully connected
dense layer, allowing for interactions between the temporal and static fea-
tures, and assign the probability of hospitalization as

r = σ([WT WSC WSN 1][hT eSC xSN br]
T) (3.6)

where WT, WSC, WSN, br are learnable parameters. For a given binary
health outcome (hospitalization), to learn the various weights (W∗ in Equa-
tions 3.3, 3.5, 3.6), we minimize the binary cross-entropy loss between the
observed health outcome and r, the vector of outcome probabilities. The rest
of the hyper-parameters are tuned via cross-validation (details in Section 3.5).

3.4 Data

We combine several data sets: individual-level smartphone location data,
census-block-level demographic data from the American Community Sur-
vey (2016), and HILFD public data of hospitals, emergency medical services,
and urgent care facilities. The location data are curated with privacy com-
pliance by a leading data collector via hundreds of commonly used mobile
apps. The data cover one-quarter of the U.S. population across Android and
iOS operating systems. Each data record corresponds to a location tracked
with information about 1) Individual ID: an anonymized unique identifier
of an individual’s device, 2) Latitude, longitude and timestamp of a location
visited; 3) Speed at which a visit was captured.

We analyzed data samples from Baltimore and D.C. (Baltimore – October,
November 2018 and 2019; D.C. – April, May 2018 and October, November
2019). For each city, we only analyze the individuals who appear across all
four months and at least ten days per month. We also eliminate those without
reliable identification of work and home locations. The final sample comprises
of 4,528 from Baltimore and 6,114 individuals from D.C. Tables 3.2, 3.3 and
Figure 3.4 display the summary statistics of the social determinants of health

10All the learnable weights W∗ and bias parameters b∗ are shared across different time steps (days
in our model).
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Description
Baltimore D.C.

Weekday Weekend Weekday Weekend
Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

Daily activities 14.64 17.12 13.81 19.64 14.70 18.48 15.86 19.66
Unique daily activities 10.71 10.42 9.62 11.12 10.81 11.38 11.34 11.70
Activities at home 5.15 14.3 8.89 22.2 4.86 14.5 8.32 21.9
Activities at work 4.37 9.43 0.79 4.65 4.89 11.2 0.95 5.85
Activities at publictransport 2.25 6.03 2.30 7.20 2.29 9.94 2.57 10.9
Activities at other 4.86 15.4 5.13 17.2 4.73 15.2 4.99 16.4

TABLE 3.3: Summary statistics of the activity trajectories

computed from the location data, census block demographics, and public
medical facilities.

Location Trajectories: Table 3.2 (Mobility row) shows the summary statis-
tics of the raw location data. In Baltimore, there are on average 22 total loca-
tions (and 7 unique locations) per individual per day. The average speed is
6.92 kmph. For all other measures, we eliminate the locations captured at a
speed > 5 kmph and dwell time < 5 minutes11. The average Haversine Dis-
tance between consecutive locations is 7.42 km and the average dwell time
2.2 hours.

Activity Trajectories : Table 3.2 (Activity and Accessibility rows), Table
3.3 detail the summary statistics of the activity trajectories (Section 3.3.1 for
the transformation of the locations to activity trajectories). Table 3.2 shows
that out of the 15 activity groups (Table 3.1), home, work and publictransport
are the top three in both the average daily occurrences and time spent. When
broken down by weekday and weekend (Table 3.3, Baltimore), work occurs
less frequently (0.79) during the weekend compared to weekdays (4.37). In
contrast, home occurs more frequently during weekends (5.15) than week-
days (8.89). To accommodate the differences12 in these top activities, we learn
weekday and weekend lifestyles separately. There are on average 14.64 to-
tal daily activities (9.62 unique) per individual on weekdays, characterized
by its activity group and time range (restaurant (2 - 5 PM)); and 14 (10.71
unique) on weekends.
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FIGURE 3.4: Row-normalized heatmap of activity occurrences (Balti-
more). Darker reds indicate higher occurrences.

11The time difference between consecutive locations is used to determine the dwell time spent at a
location.

12We confirmed that these differences between weekends and weekdays for work and home are sta-
tistically significant at p = 0.01 based on a paired Wilcoxon test.

DocuSign Envelope ID: F8C86E15-F703-4BF7-9D1C-0466EF7A90C2



3.5. Empirical Study 87

Figure 3.4 plots the heat map of the activities on weekends and week-
days, with a lighter color indicating a lower occurrence of an activity during
the corresponding time. Figure 3.4a shows that work mostly occurs during 2
- 5 P.M., home 12 - 3 AM. In contrast, on weekends people tend to stay home
during the same time window (Figure 3.4b). Also, leisure, shopping, and
consumption activities, occur earlier (9 - 11 P.M.) on weekdays than week-
ends (12 - 3 A.M.).

Census Block Socio-economics: An individual’s census block is assigned
based on the closest census block by Haversine Distance to his/her home. Ta-
ble 3.2 (Social Demographics) exhibits the summary statistics of the census
block socio-economic factors.

Health Outcome: An individual’s health outcome is defined as a hospi-
talization event observed in the location data over the last two months of
the sampling period. A total of 111 (158) individuals had hospitalizations
spanning both day and night and 127 (175) during night at Baltimore (D.C.).

3.5 Empirical Study

(A) Lifestyle 1 (B) Lifestyle 2 (C) Lifestyle 3

(D) Lifestyle 4 (E) Lifestyle 5

FIGURE 3.5: Weekday Lifestyles (Baltimore)

3.5.1 Lifestyles

We apply the proposed ATM-based methodology on the first two months of
the location data during the sampling period to identify the lifestyles. Fig-
ures 3.5 and 3.6 present the top 10 activities representative of weekend and
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weekday lifestyles. The number of lifestyles (topics, K) are decided based on
coherence (Sievert and Shirley, 2014). Coherence measures how well-focused
the top words (activities) describe a specific lifestyle. We vary K between 3 to
25, and compute the average coherence over 50 runs to determine the num-
ber of topics for weekdays and weekends, respectively. The top 10 (Y = 10,
Def. 9) relevant activities for each topic are then visualized for the highest co-
herent ATM model in figures 3.5 and 3.6. In total, we identify five weekday
and four weekend lifestyles with different activities across different hours-
of-the-day.

Weekday Lifestyles: Figure 3.5 visualizes the five identified weekday
lifestyles and their corresponding activities for Baltimore residents. Lifestyle
3 (denoted by wt.3 ) characterizes a late work routine (work over 11 - 2 PM, 2
- 5 PM, 5 - 7 PM), commute via public transportation mornings and evenings
(publictransport over 9 - 11 AM , 9 - 11 PM), late night dining at restaurants,
grocery shopping, and recreation (necessityshopping 12 - 3 AM, restaurant 9 -
11 PM, recreation in 9 - 11 PM). In contrast, lifestyle 4 (wt.4, although with
similar commute and consumption patterns, reveals an early work routine:
work 9 - 11 AM, 11 - 2 PM, 2 - 5 PM, and fitness during evenings (5 - 7 PM).
Both lifestyles feature a steady full-time work routine, and work-fitness bal-
ance. Lifestyle wt.1, in comparison, indicates a part-time job (work 11 - 2 PM,
12 - 3 AM).

(A) Lifestyle 1 (B) Lifestyle 2 (C) Lifestyle 3

(D) Lifestyle 4

FIGURE 3.6: Weekend Lifestyles (Baltimore)

Weekend Lifestyles: Figure 3.6 displays the top ten activities of the four
weekend lifestyles for Baltimore residents. As expected, apart from lifestyle
wwt.3 (work 11 - 2 PM, 2 - 5 PM), all other lifestyles suggest a non-work rou-
tine. Lifestyle wwt.1 characterizes an early start weekend routine with visits
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to religious locations (religious 9 - 11 AM, 9 - 11 PM) and restaurant after-
wards (11 - 2 PM). In contrast, lifestyle wwt.4 indicates a late start routine,
where the individuals mainly stay at home during these hours, with fitness
and recreations later in the evening (fitness 9 - 11 PM, personalcare 12 - 3 AM).
Besides work on weekends, individuals in lifestyle wwt.3 regularly consume
at restaurants (restaurant 2 - 5 PM, 9 - 11 PM). Lifestyle wwt.1 stays at home
weekends, dine at restaurant 11 - 2 PM, with limited fitness or leisure activ-
ities. In D.C., we identify five weekday and four weekend lifestyles. Due
to space limitations, we focus on Baltimore. Overall, the proposed lifestyle
identification uncovers distinctive activity patterns from location data.

3.5.2 Health Risk Quantification

We identify hospitalization from the two months of location data in 2019 and
then link them to the social determinants.

Model-free Evidence: Figure 3.7 exhibits the histogram of the percentage
of the 4,528 Baltimore residents with each lifestyle visiting medical facilities.
Weekday lifestyles wt.2 and wt.5 have higher (3.29% and 4.95%, Figure 3.7a)
than average (2.45%) percentages of individuals visiting medical facilities.
In contrast, lifestyle wt.4 has about half (1.49 %) the average percentage of
hospitalizations. Similarly, Figure 3.7c reveals that weekend lifestyles wwt.1
and wwt.3 experience higher percentages of hospitalizations whereas lifestyle
wwt.2 half less likely.
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FIGURE 3.7: (Baltimore) Association with Hospitalization : Model
free analysis (hospitalization)

DocuSign Envelope ID: F8C86E15-F703-4BF7-9D1C-0466EF7A90C2



90 Chapter 3. Social Determinants of Health

We quantify the relative rate of future hospitalizations per lifestyle against
the average rate by using the lift score (Figures 3.7b, 3.7d). The top activities
characterizing each lifestyle (Figures 3.5, 3.6) and their lift scores suggest that
those who participate in fitness on weekends (wwt.4) or weekdays (wt.4) are
less likely (0.65 and 0.60, respectively) to have hospitalizations on average.
On the other extreme, those with either busy, volatile work routines (wt.5) or
no work routine (wt.2) on weekdays, are 2.01 and 1.34 times more likely to
have hospitalizations (Figures 3.7b, 3.5; and people who either work (wwt.3)
or mostly stay at home (wwt.1) on weekends are 1.1 to 1.4 times more likely
to have hospitalizations than average (Figures 3.7d, 3.6). Overall, the model-
free evidence reveals heterogeneous rates of hospitalizations across different
lifestyles.

Logit Analysis: To supplement the model-free evidence, we examine an
individual’s likelihood of having future hospitalization using a Logit model:

P(hospitalization_i) =
eXi

1 + eXi

Xi = αi + β1li f estyle_weekdayi + β2li f estyle_weekdayi+

β3Xaccess
i + β4Xmobility

i + β5Xdemog
i + β6Xcommunity

i

(3.7)

where hospitalization_i is 1 if an individual had at least one hospitaliza-
tion during the two months in 2019, li f estyle_weekdayi and li f estyle_weekendi
are dummies indicating the individual’s weekend and weekday lifestyles,
Xaccess

i , Xmobility
i are the average daily accessibility and mobility metrics, re-

spectively, in Table 3.2; Xcommunity
i are the average mobility and accessibility

metrics of the residents in the same census block group as the individual; and
Xdemog

i are the census block socio-economic factors. Table 3.4 (Columns 1 - 4)
displays the maximum log-likelihood estimates of the lifestyles while con-
trolling for different individual-level features. The coefficients indicate the
odds of an individual with a specific lifestyle to have a future hospitalization
over the average odds.

Dep. variable : hospitalization

(1) (2) (3) (4) (5)

Weekend lifestyle 1 (wwt.1) 0.384∗∗ (0.174) 0.353∗∗ (0.176) 0.324∗∗ (0.182) 0.296∗ (0.197) 0.295∗ (0.198)
Weekend lifestyle 2 (wwt.2) −0.804∗∗ (0.347) −0.771∗∗ (0.348) −0.805∗∗ (0.354) −0.976∗∗ (0.402) −0.982∗∗ (0.404)
Weekend lifestyle 4 (wwt.4) −0.024 (0.182) −0.010 (0.183) 0.114 (0.192) 0.213 (0.208) 0.214 (0.210)
Weekday lifestyle 1 (wt.1) −0.685∗∗∗ (0.189) −0.691∗∗∗ (0.190) −0.665∗∗∗ (0.200) −0.654∗∗∗ (0.209) −0.648∗∗∗ (0.211)
Weekday lifestyle 2 (wt.2) 0.121 (0.177) 0.076 (0.182) −0.204 (0.175) −0.138 (0.193) −0.130 (0.195)
Weekday lifestyle 4 (wt.4) −0.494∗∗ (0.241) −0.463∗ (0.243) −0.429∗ (0.250) −0.395∗ (0.261) −0.334∗ (0.262)
Weekday lifestyle 5 (wt.5) 0.998∗∗∗ (0.146) 1.030∗∗∗ (0.149) 0.933∗∗∗ (0.155) 0.946∗∗∗ (0.164) 0.928∗∗∗ (0.167)

Accessibility metrics 7 3 3 3 3

Mobility metrics 7 7 3 3 3

Social Demographics 7 7 7 3 3

Community Controls 7 7 7 7 3

Observations 4,528 4,528 4,528 4,528 4,528
Log Likelihood −665.904 −657.063 −586.244 −532.423 −527.367

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

TABLE 3.4: (Baltimore) Hospitalization Logit Analysis

Table 3.4 (Column 4) indicate that those with wwt.4, wt.5 have signifi-
cantly higher odds of having a future hospitalization (1.34 ≈ exp(0.296) and
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2.57, respectively) than average, after controlling for other social determi-
nants. Similarly, lifestyles wwt.2, wt.1 and wt.4 have significantly lower odds
than average. These insights are qualitatively consistent with the model free
evidence. Interestingly, we do not find any significant association between
Xaccess

i , Xdemog
i and future hospitalizations indicating that two individuals

who live in the same neighborhood with similar social demographics, ac-
cess to parks/fitness facilities, but with different lifestyles, will have differ-
ent health risks. In Table 3.5, we introduce total dwell time at healthy (fitness,
personal care) and unhealthy activities into the regression and observe that
regularity of healthy activities matters (lifestyle wt.1, wt.4, wwt.4), instead of
the total dwell time (e.g., two individuals with similar fitness/work hours
per week, but different distribution of these activities across days may lead
to different health risks) further highlighting the importance of mining the
lifestyle patterns to quantify health risk. On the flip side, we also observe
that total time spent at unhealthy activities is significantly correlated to fu-
ture hospitalization. In D.C, the qualitative findings remain similar. In addi-
tion, we find that regularity of unhealthy activities associate with significantly
higher odds (1.6) of future hospitalization.

Dep. variable : hospitalization

(1) (2) (3)

Weekend lifestyle 1 (wwt.1) 0.295∗ (0.198) 0.295∗ (0.198) 0.295∗ (0.199)
Weekend lifestyle 2 (wwt.2) −0.978∗∗ (0.404) −1.010∗∗ (0.407) −1.002∗∗ (0.406)
Weekend lifestyle 4 (wwt.4) 0.208 (0.210) 0.211 (0.210) 0.235 (0.211)
Weekday lifestyle 1 (wt.1) −0.638∗∗∗ (0.212) −0.619∗∗∗ (0.214) −0.589∗∗∗ (0.212)
Weekday lifestyle 2 (wt.2) −0.126 (0.195) −0.143 (0.196) −0.143 (0.197)
Weekday lifestyle 4 (wt.4) −0.334∗ (0.262) −0.329∗ (0.262) −0.339∗ (0.262)
Weekday lifestyle 5 (wt.5) 0.929∗∗∗ (0.167) 0.915∗∗∗ (0.167) 0.917∗∗∗ (0.167)
total_fitness_dwell −0.001 (0.009)
total_personalcare_dwell −0.001 (0.002)
total_unhealthyactivities_dwell 0.003∗∗ (0.001)

Other social determinants 3 3 3

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

TABLE 3.5: (Baltimore) Hospitalization : Additional Logit Analysis

Predictive Performance: As detailed in Sec 3.3.4, the proposed learner

City = Baltimore
Day and Night Hospitalization

(hospitalization)
Late Night Hospitalization

(hospitalization_night)
6-hour hospital visit
(hospitalization_alt)

Hospitalization rate 2.45% 2.80% 4.75%

Model /Measure PR AUC AUC PR AUC AUC PR AUC AUC
RF (NLI & NAC) 0.05 (1.13 %) 0.63 (1.91 %) 0.06 (1.05 %) 0.61 (2.15%) 0.11 (1.76%) 0.65 (2.04%)
GB (NLI & NAC) 0.06 (1.14%) 0.64 (2.12%) 0.06 (1.32%) 0.63 (1.69%) 0.12 (1.10%) 0.65 (2.31%)
Lasso (ALLAGG) 0.14 (2.27 %) 0.73 (4.53%) 0.13 (2.05 %) 0.72 (4.70 %) 0.21 (2.02 %) 0.70 (4.58 %)
RF (ALAGG) 0.22 (2.54 %) 0.78 (4.06%) 0.21 (2.63%) 0.74 (4.90%) 0.29 (2.53%) 0.74 (4.69%)
GB (ALLAGG) 0.23 (2.47 %) 0.76 (4.06%) 0.21 (2.69%) 0.73 (4.64%) 0.27 (2.73%) 0.71 (4.44%)
LSTM (NL & NAC) 0.15 (1.97%) 0.72 (1.60%) 0.17 (1.39%) 0.74 (2.12%) 0.21 (1.22%) 0.72 (2.86%)
LSTM (NLI) 0.24 (1.05%) 0.79 (2.95%) 0.24 (1.26%) 0.76 (3.46%) 0.38 (1.71%) 0.80 (3.90%)
Full model 0.28 (1.53%) 0.85 (3.67%) 0.29 (1.17%) 0.84 (3.95%) 0.42 (1.47%) 0.86 (3.67%)

TABLE 3.6: (Baltimore) Hospitalization prediction
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City = DC
Day and Night Hospitalization

(hospitalization)
Late Night Hospitalization

(hospitalization_night)
6-hour Hospital visit
(hospitalization_alt)

Hospitalization rate 2.58% 2.87% 5.71%

Model/Measure PR AUC AUC PR AUC AUC PR AUC AUC
RF (NLI & NAC) 0.07 (1.01 %) 0.63 (2.11 %) 0.06 (0.96 %) 0.65 (1.85%) 0.12 (1.89%) 0.66 (2.11%)
GB (NLI & NAC) 0.06 (1.08%) 0.62 (2.04%) 0.07 (1.14%) 0.66 (1.96%) 0.11 (1.61%) 0.68 (2.41%)
Lasso (ALLAGG) 0.17 (2.75 %) 0.76 (4.13 %) 0.16 (2.84 %) 0.76 (4.96 %) 0.24 (2.85 %) 0.78 (4.97 %)
RF (ALLAGG) 0.23 (2.96 %) 0.80 (4.82%) 0.22 (2.69%) 0.80 (4.90%) 0.30 (2.57%) 0.81 (4.98%)
GB (ALLAGG) 0.24 (2.07 %) 0.79 (4.27%) 0.22 (2.27%) 0.81 (4.64%) 0.31 (2.63%) 0.82 (4.82%)
LSTM (NLI & NAC) 0.16 (1.24%) 0.74 (1.99%) 0.17 (1.91%) 0.75 (2.62%) 0.26 (1.75%) 0.77 (2.72%)
LSTM (NLI) 0.23 (1.97%) 0.81 (2.71%) 0.21 (2.01%) 0.80 (3.22%) 0.35 (1.75%) 0.81 (3.54%)
Full model 0.30 (1.42%) 0.87 (3.12%) 0.32 (1.39%) 0.89 (3.41%) 0.44 (1.87%) 0.90 (3.80%)

TABLE 3.7: (D.C.) Hospitalization Prediction

takes the individual features extracted from the location data in 2018 to pre-
dict the health risk (Eq 3.6), i.e., the probability of an individual having a
hospitalization in 2019. In practice, given a series of risk scores, a domain
expert would ideally set the minimum threshold to deem if an individual
has surpasses an "at-risk" threshold. Hence, in Table 3.6, 3.7, we report the
average cross-validated PRAUC and ROCAUC and corresponding standard
deviation percentages to sweep all possible thresholds13.

We compare our learner’s predictive performance with several baselines’
to investigate 1) importance of jointly representing multiple facets of an in-
dividual using a sequential model; 2) performance lift provided by individ-
ual behavioral features – lifestyles and day-to-day activities. To support 1),
we employ non-sequential learners, Random Forest (RF), regularized logis-
tic regression (LASSO), and Gradient Boosting (GB) with aggregated static,
dynamic numerical and categorical features (ALLAGG) (Table 3.2)14. To sup-
port 2), we design ablations of the proposed learner and baselines without
the dynamic lifestyles (NLI) and activity features (NAC).

Table 3.6 suggest that the proposed learner outperforms both types of
baselines considered. The proposed model for health risk quantification has
an AUPRC of 0.28 and AUC of 0.85. The best performing non-sequential
model performs worse than the proposed learner (0.23 compared to 0.28),
indicating the importance of modelling temporal correlations across features
via LSTMs. Ablations of the non-sequential models and the proposed learner
suggest lifestyles and day-to-day activities, in aggregate and dynamic form,
provide a performance lift. The best performing non-sequential model (GB)
has a PR AUC increment from 0.06 to 0.23; sequential models from 0.15 to
0.28. Finally, the ablation of the proposed learner without the CLSTM cell
performs worse (0.24 PR AUC) than the full model (16 % increase in PR

13We also include hospitalization_alt, an indicator of an individual spending 6 hours in a medical
facility on any day in the 2 months in 2019, in addition to the 2 indicators in Table 3.2. The data are split
into 70% training, 15% validation, and 15% test sets; and a ten-fold cross validation is performed. We
perform a grid search to optimize several tune-able model hyper-parameters: dimensionality of the
dynamic and static categorical embeddings, class weights, learning rate, number and size of various
hidden layers.

14The dynamic features for e.g. daily unique locations are aggregated across days as the average
daily unique locations. The categorical features are encoded as one-hot dummies. Several parameters
of the baselines are optimized by performing a grid search. We report the average ten-fold cross-
validated PR AUC and AUC. SMOTE (Chawla et al., 2002) is used to account for the class imbalance
for the non-sequential baselines.
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AUC), indicating the importance of lifestyles as the contexts to the dynamic
features. These results remain qualitatively similar for the D.C. residents (Ta-
ble 3.7, 30% increase from ablations).

3.6 Conclusion

We develop a framework to identify individual social determinants of health
and quantify their impact on future hospitalizations from granular smart-
phone location data. Specifically, building on topic models, we first identify
an individual’s lifestyles; then supplement them with additional accessibil-
ity and socio-economic features; through an array of analyses, we quantify
the strong connection between the social determinants, particularly lifestyles,
and future hospitalization by leveraging sequential deep learning models.
This research broadens the prior literature by exploring novel, extensive,
behavior-rich data beyond the EHRs at a population scale, thus offering gen-
eralizable insights to guide policy making, promote public health, and miti-
gate the rocketing healthcare costs.
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Appendix A

Personalized and Interpretable
Privacy Preservation

A.1 Objective Function Analysis

In our proposed method, we frame the problem of preserving privacy at a
consumer level. As defined in RQ1 and RQ2, ri is the consumer’s privacy
risk of sharing their trajectory data with an advertiser and ui be the adver-
tiser’s benefit of acquiring the trajectory data. Our obfuscation scheme based
on suppression of locations has two consumer specific parameters zi (number
of locations to be suppressed) and ~si (identity of locations to be suppressed).
To maintain the utility-risk trade-off, the data collector’s decision would be
to find the tuple {~si, zi})) to maximize the expected data utility for adver-
tisers, E(ui) and minimize the consumer privacy risk E(ri). LetE∗(ui) and
E∗(ri) denote the expected utility and risk respectively when there is no ob-
fuscation performed on the consumer trajectories. We frame the problem as
minimizing the relative decrease in utility (E∗(ui)−E(ui))

E∗(ui)
and maximizing the

relative decrease in risk (E∗(ri)−E(ri))
E∗(ri)

. Formally, the objective function that a
data collector faces can be written as

O({~si, zi}) = Min(
(E∗(ui)− E(ui))

E∗(ui)
− (E∗(ri)− E(ri))

E∗(ri)
) (A.1)

Note that, E∗(ui) and E∗(ri) vary depending on the type of privacy risk and
utility and can be computed apriori as detailed in Section 1.4.3. This results
in

O({~si, zi}) = Min(
E(ri)

E∗(ri)
− E(ui)

E∗(ui)
) (A.2)

We solve this objective function empirically by varying the parameter zi =
ri p, with a grid of pack ∈ [0, 1] (Eq 6, Section 1.4.3). This ensures reduction in
expected risk - as we increase p, E(ri)

E∗(ri)
decreases. For instance, when p = 0,

E(ri) = E∗(ri), a positive constant and for ri=1 (high-risk consumer) and
p=1, E(ri)= 0 since there are no locations shared with the advertiser. The
grid-based search offers the following benefits for a data collector, compared
to an analytical approach.

1. Flexibility : A data collector can plug in different quantifications of
E(ri) and E(ui), pertaining to different privacy risks and advertiser util-
ities. We illustrate this by examining two key types of privacy risks
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and two advertiser applications in the revised version. If a data collec-
tor has access to other heuristics to quantify these, for example, E(ri)
can be simply quantified as unique locations of an individual, higher
the number, lower the risk, the grid-based approach would still enable
them to find an optimal trade-off. This generalizability is lost when we
constrain E(ri) and E(ui) to a specific functional form which we see as a
key contribution to our study. A recent work published in TKDE, Yang
et. al. 2018, take this approach where they aim to reduce the inference
attack while maintaining the POI based recommendation utility.

2. Convergence : If we are to consider a specific functional form of E(ri)
and E(ui), to solve the minimization using a descent-based approach,
one would need to further constrain the class of functions that E(ri) and
E(ui) belong to. While optimizing difference of convex functions (Refer
to Bačák 2011 for a review) is well studied, E(ui), which we quantify
as MAP@k,MAR@k in both our utility functions (POI and Activity pre-
diction) is not convex (Kar et. al. 2015). This results in a difference of
convex and non-convex function, which is currently an active area of
research in the optimization community and not the key focus of our
work. Finally, if we were to just assume that both E(ri) and E(ui) are
differentiable, analytical computations of the gradients with respect to
the parameters {~si, zi}))) are computationally intensive given the na-
ture of the heuristics involved in quantifying E(ri) and E(ui).

A.2 Early Stopping

An exhaustive grid-based approach comes with its own shortcomings. Specif-
ically, the discretization of the grid p, would decide the best trade-off achieved.
While considering a finer discretization of p, can remedy this issue, we would
run into computational issues in estimating E(ri) and E(ui). We partially
address the computational issue in our implementation of the proposed ob-
fuscation scheme, by estimating E(ri) and E(ui) for different values of p ∈
{0, 0.1, ..., 1}, in parallel. However, exhaustively searching a finer grid would
require constraining the search space to remain computationally efficient. To
alleviate this, we propose an early-stopping heuristic which improves the
current grid-based search by starting from coarser grid intervals of p instead
of a fixed grid of points, iteratively estimates E(ri) and E(ui) for a finer grid
of values efficiently, guided by an acceptable decrease in advertiser’s utility.
We discuss the algorithm next.

Input: N consumer trajectories {Ti}, An estimator for E(ri), E(ui), where
ri =PR(Ti; {~si, zi}), ui = U(Ti; {~si, zi}), optionally, an acceptable relative de-
crease in Advertiser utility Uacc

Output: Obfuscated consumer trajectories {P(Ti)}

1. Start with a coarse set of grid intervals for Gp ∈ {[0, 0.1], [0.1, 0.2], . . . , [0.9, 1]}
and possible set of pre-computed ~si based on frequency, time spent and
recency of locations in Ti.

2. Set Gprune = φ.
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(a) Estimation : In parallel, repeatedly sample Ns consumers from N
i. In each iteration, for each ~si , sample a p in each grid g ∈ Gp

ii. Compute E(ri) and E(ui) over M iterations by suppressing the
locations using Eq 1.6). The average of M iterations corresponds
to the estimates for a specific grid in Gp.

(b) Pruning :

i. If (E∗(ui)−E(ui))
E∗(ui)

< Uacc, add the corresponding g to Gprune

ii. In Gprune, keep top d |Gprune|
2 e grids based on the increasingly

sorted (E∗(ri)−E(ri))
E∗(ri)

iii. Stopping criterion : If the M paired estimates of (E∗(ri)−E(ri))
E∗(ri)

of
the top two grid intervals do not have a statistically significant
difference under paired t-test statistic or if Gprune is empty, pick

the obfuscation parameters with highest (E∗(ri)−E(ri))
E∗(ri)

in Step 2
a) ii), obfuscate {Ti} and return {P(Ti)}.

(c) Candidate Set :
i. Construct finer grids for each g ∈ Gprune by splitting each g at

their mid-point resulting in a maximum of |Gp|+ 1 candidate
sets.

ii. Set Gp = Gprune and go to 2.2.

The outline of our early Stopping heuristic is detailed above. The algo-
rithm starts off with a coarse-grained set of grid intervals Gp instead of a
fixed set of points. We instantiate |Gp| independent parallel threads at Step
2) similar to the parallel computation in the proposed fixed grid approach.
Each thread is responsible to compute the estimates of E(ui) and E(ri) for a
grid interval g in Gp, across M repeated sample trajectories of size Ns, which
are again executed in parallel. In the fixed grid approach, we compute this
estimate by averaging across twenty trials for a fixed value of p (Section 5.1
and 5.2) on all the consumer trajectories N.

Next, each child thread involves sampling a value of p in the grid interval
(E.g.: 0.21 in grid [0.2, 0.3]), and computing E(ui) and E(ri) across the three
specifications of ~si. The average of the M resulting estimates for each g is
used to prune Gp, to remain computationally efficient and generate finer grid
intervals in the successive iterations, thus performing an exhaustive search
of the parameter space. In Step 2.2) i), an optional parameter – acceptable
relative decrease in advertiser’s utility Uacc is used to prune grid intervals
in Gp into Gprune. We further prune Gp by dropping the grid intervals cor-
responding to the bottom quantile of the relative decreases in consumer risk
(E∗(ri)−E(ri))

E∗(ri)
. If the resulting Gprune is empty, or if the means of the top two

estimates in Gprune are not statistically significant under paired t-test statistic,
we stop the search and obfuscate {Ti} based on the parameters that resulted
in the highest relative decrease in consumer risk in Step 2.1) ii). Next, we
generate a finer candidate set based on the resulting non-empty Gprune by
splitting each g at their mid-point. This results in a maximum of |Gp| + 1
candidate sets for the next iteration which happens when no pruning was
done due to Uacc and if |Gp| is odd.
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Utility Risk k
Acceptable

decrease in U
Best p

%Dec.
in Risk

POI prediction

Home address inference

1 5 0.74 19.1
5 5 0.62 9.2
10 5 0.57 10.1
1 10 0.81 23.1
5 10 0.85 17.1
10 10 0.79 18.1

Re-identification threat

1 5 0.72 19.1
5 5 0.53 16.1
10 5 0.58 17.1
1 10 0.92 28.4
5 10 0.81 21.3
10 10 0.83 20.1

TABLE A.1: Early stopping heuristic : POI@k

Utility Risk k
Acceptable

decrease in U
Best p

%Dec.
in Risk

Activity prediction

Home address inference

1 5 0.63 15.1
5 5 0.52 12.2

10 5 0.42 9.3
1 10 0.79 21.2
5 10 0.62 15.1

10 10 0.56 13.5

Re-identification threat

1 5 0.59 17.2
5 5 0.52 13.1

10 5 0.47 9.4
1 10 0.69 21.8
5 10 0.61 17.2

10 10 0.52 13.7

TABLE A.2: Early stopping heuristic : Activity Prediction@k

A.3 Complexity Analysis

We envision the obfuscation to be performed offline by the data collector
before sharing the location data with advertisers. Our obfuscation scheme
requires computing features F (Ti) and inference of ui and ri for a trajectory
Ti (or an obfuscation of it P(Ti)) from a trained machine learning heuris-
tic. Denote these inference times for a single consumer trajectory Ti as O(Fi),
O(ui) and O(ri). Note that these vary depending on the choice of privacy
risk and utility function made by the data collector. To compute the esti-
mates presented in Figure 4, we vary the grid parameter p ∈ {0, 0.1, ..., 1}
and estimate E(ui) and E(ri) for twenty trials. This involves 20× 10× N ×
O(Fi) ≈ N × O(Fi) time for feature computation. Once the features are
built, these feed into the corresponding risk and utility estimation - 20× 10×
N ×O(ui)×O(ri) ≈ N ×O(ui)×O(ri). Hence the total time complexity is
bounded by O(N(Fi + uiri)).

1. In the case of Random Forests, which we employ for sensitive inference
threat and in the sped-up heuristic for re-identification threat (Section
2), since N � d, the inference complexity is bounded by O(N), hence
O(ui) ≈ 1. For the POI prediction, the inference is again linear, to com-
pute the nearest k locations for each consumer using a selection algo-
rithm. Hence, the overall complexity is bounded by O(NFi) for both
the privacy threats considered in the case of POI prediction.

2. In the activity prediction scenario, we employ a LSTM to quantify the
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Utility Risk
Clock Time (seconds)

Data Full grid Early stop

Next POI Re-identification 100% 865 226
Next POI Home address inference 100% 978 258

Activity prediction Re-identification 100% 1390 312
Activity prediction Home address inference 100% 1543 396

Next POI Re-identification 50% 503 136
Next POI Home address inference 50% 645 187

Activity prediction Re-identification 50% 790 210
Activity prediction Home address inference 50% 832 225

TABLE A.3: Clock time of the proposed heuristic
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FIGURE A.1: Home address inference, POI prediction

utility. The inference time is linear in the number of points. While we
do not need feature computation for the activity prediction, these still
need to be computed to quantify consumer risk. Hence, the complexity
is the same as earlier, bounded by O(NFi).

In the proposed early stopping heuristic, additional compute overhead arises
from spanning across a finer grid of parameters, averaging over M = 50
repeated trials, until a stopping criterion is met. However, this overhead is
offset since the estimates are computed on a subset of the data Ns. This is
observed in Figure A.1 and Table A.3, where the early stopping heuristic is
on an average four times faster than the fixed-point grid-based search.

We repeat all the experiments reported in the original paper with the pro-
posed early stopping heuristic and report the resulting relative decreases in
consumer risk and advertiser utility in Tables A.1, A.2.

A.4 Speed-up Heuristic.

While the re-identification risk can be exactly computed for a given |T̄i|, it
is computationally inefficient with a complexity of O((|Ti|

|T̄i|
)×N). To speed up

the computation, we leverage a recent study (Pellungrini et al., 2018) that em-
pirically shows the predictability of the re-identification risk for a given k us-
ing mobility features. The main idea is to learn a supervised algorithm, Ran-
dom Forest, by building a set of mobility features similar to F (T) discussed
in Section 1.4.1. We adopt this idea by further augmenting the mobility fea-
tures with our consumer-consumer and consumer-location affinity features.
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We then analytically compute the risks for a subset of the consumers and use
the trained model to approximate the risks for the rest of the consumers (see
Appendix A.6 for the technical details).

A.5 Utility Measurement

We compute the data utility under different obfuscations and by computing
the performance of a neighborhood-based collaborative filtering recommen-
dation model to accurately predict future consumer locations. To assess the
accuracy of the predictions made, we treat the locations visited by each con-
sumer in the fifth week as the ground truth and train the recommendation
model to predict these locations.

Based on the consumer risks, we obfuscate Ttrain by varying p ∈p. We
learn a neighborhood-based recommendation model (Bobadilla et al., 2011)
by tuning the number of neighbors via five-fold cross-validation on the ob-
fuscated training sampleP(Ttrain). The model is learned to rank the locations
that a consumer is likely to visit during the fifth week of the observation pe-
riod. That is, we build the features F (P(Ttrain)) on first four weeks’ data
and tune the number of neighbors by using a grid of {5, 10, 25, 50, 100, 200}
to maximize the predictive accuracy. Then, we compute the data utility,
MAP@k and MAR@k, on Ttest for k = {1, 5, 10} to illustrate the efficacy of the
proposed method. The learned recommendation model can be used to com-
pute MAP@k and MAR@k for other values of k as well. Intuitively, MAP@1
and MAR@1, for example, represent an advertiser’s utility to predict the next
location most likely visited by a consumer in the fifth week based on the rec-
ommendation model learned on the obfuscated data. A key detail in the util-
ity estimation is that we do not perform any obfuscation on Ttest for any value
of p, since our aim is to quantify the ability of obfuscated data, P(Ttrain), to
learn a consumer’s true preference revealed in the unobfuscated test sample.
Similar to the risk computation, we perform 20 trials for each p and report
the mean and 95% confidence intervals of the utility metrics in Figure 1.4.

A.6 Model Choices in the Proposed Framework

We empirically justify our model choices in the proposed framework. All
choices are made based by assessing the performance of different machine
learning heuristics used in our framework on the unobfuscated data. First,
in Figures A.2a and A.2b, we show the incremental benefit of the affinity fea-
tures discussed in extracting the features F (T). Figure A.2a shows the accu-
racy of the Random Forest classifier in predicting each consumer’s operating
system. The model is regularized by performing a grid search on the maxi-
mum number of features {.25, .5, .75, 1} and trees {50, 100, 200} via five-fold
cross-validation. The best performing model has an accuracy of 82% which
indicates the success that a stalker would have in inferring the unpublished
operating system of a consumer from the trajectory data. In Figure A.2b,
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we plot the RMSE of the Random Forest regressor trained to predict home
addresses.1
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FIGURE A.2: Proposed framework model choices

Next, we learn two regression models to predict the Universal Trans-
verse Mercator (UTM) transformed latitude and longitude of the home lo-
cation with similar hyperparameter tuning as earlier. The error estimate is
the Euclidean distance between the estimated and assigned home UTM co-
ordinates. From the box plots of the re-sampled performance measures (Fig-
ures A.2a and A.2b), we notice that the consumer-consumer and consumer-
location affinity features incrementally improve the performance of both proxy
models learned. In Figures A.2c and A.2d, we visualize the MAP@k and
MAR@k of the neighborhood-based recommendation model learned by tun-
ing the number of neighbors.

We compare the performance with several baselines - recommendations
based on the most popular locations (Most Popular), locations that the con-
sumer spent the most time in (Most Dwell (consumer)), visited most fre-
quently (Most Frequent (consumer)), and a singular value decomposition
(SVD) on the consumer-location matrix populated with visit frequency. We
observe that the NN based model performs better in both metrics compared
to the baselines, justifying the choice. The RMSE, 3,900 meters ≈ 2.46 miles
indicates the success that a stalker would have in identifying a consumer’s

1We treat each consumer’s most frequently visited location 10pm-6am as the ground truth of home
location. The results remain robust across alternative time periods, e.g. 11pm-5am. We do not save
these home locations to preserve consumer privacy.
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home location from the unobfuscated data. Further, we also notice the incre-
mental benefit of the affinity features in the recommendation performance
(See NN consumer Mobility vs NN consumer Mobility + affinities in Figures
A.2c and A.2d).

A.7 Additional Literature Review

Marketing research on consumer privacy falls into four main streams: consumer-
, firm-, regulation-, and methodology- focused. We will concisely the first
three streams here. The first stream takes on a consumers’ perspective, and
as a result, derives implications for firms to design privacy-friendly policies.
For instance, a number of studies examine how consumers respond to pri-
vacy concerns or make privacy choices about privacy-intruding survey ques-
tions (Acquisti, John, and Loewenstein, 2012), platform provided privacy
settings (Burtch, Ghose, and Wattal, 2015; Adjerid, Acquisti, and Loewen-
stein, 2018), online display ads that match website contents but with obtru-
sive format (Goldfarb and Tucker, 2011c; Goldfarb and Tucker, 2011b), or
opt-in/out options of email marketing programs (Kumar, Zhang, and Luo,
2014). Other studies explore how normative and heuristic decision processes
influence consumers’ privacy decision making (Adjerid, Peer, and Acquisti,
2016). Overall, these studies point to positive effects of granting consumers
enhanced controls over their own privacy, such as increasing their likeli-
hood of responding to sensitive survey questions or click on personalized
ads (Tucker, 2013). Interestingly, this stream of research also reveals that con-
sumers behave in a way that reflects a “privacy paradox”: claiming to care
about their personal data yet more than willing to exchange the data for con-
crete benefits, such as convenience, personalization, or discounts (Acquisti
and Grossklags, 2005; Chellappa and Sin, 2005; Awad and Krishnan, 2006;
Xu et al., 2011; Ghose, 2017; Luo et al., 2014; Ghose, Li, and Liu, 2018), lower
insurance premiums (Soleymanian, Weinberg, and Zhu, 2019), or a wider
reach to audiences on social media for information acquisition or propaga-
tion (Adjerid, Acquisti, and Loewenstein, 2018). This paradox conversely
indicates the potential for butler advertisers to leverage the newest mobile
location data for geo-marketing to consumers in a mutually beneficial man-
ner.

The second stream of literature assumes a firms’ perspectives, often using
a game-theoretic approach to reach normative implications of firms’ privacy
policies. For instance, Chellappa and Shivendu, 2010 derive an optimal de-
sign of personalization services for customers with heterogeneous privacy
concerns. Gardete and Bart, 2018 propose an optimal choice of ad content
and communication when the firm withholds the customers’ private infor-
mation. Conitzer, Taylor, and Wagman, 2012 reveal a monopoly’s optimal
cost of privacy for customers to remain anonymous. Hann et al., 2008 show
that consumers’ different actions toward preserving their privacy, such as
address concealment or deflecting marketing, impact a firm’s actions to ei-
ther shifting marketing toward other consumers or reduce marketing over-
all. Adding competition to the picture, this stream of research also suggests
optimal competitive strategies when profiting from disclosing customer in-
formation (Casadesus-Masanell and Hervas-Drane, 2015), or designing a B2B
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market which preserves privacy to incentivize competitor participation (Kal-
venes and Basu, 2006). Other studies have also conceptualized the differen-
tial importance of privacy to different platforms (Bart et al., 2005) and as-
sessed the impact of data breaches on firms’ financial performances (Mar-
tin, Borah, and Palmatier, 2017). Interestingly, this stream of research also
demonstrates that firms, such as an ad network, do have innate incentives to
preserve customer privacy even without privacy regulations (Rafieian and
Yoganarasimhan, 2018).

The third stream of research focuses on privacy regulations. For exam-
ple, these regulations are shown to impact firms’ privacy-pertinent practices,
technology innovations (Adjerid, Peer, and Acquisti, 2016) and adoptions
(Miller and Tucker, 2009; Miller and Tucker, 2017), and consumers’ responses
to e.g. the do-no-call registry (Goh, Hui, and Png, 2015). European Union
(EU)’s privacy policy is shown to reduce the effectiveness of online display
ads (Goldfarb and Tucker, 2011a). Different components of a privacy law
may also incur different effects, for instance, granting consumers controls
over re-disclosure encourages genetic testing, whereas privacy notification
deters it (Miller and Tucker, 2017).

A.8 Sensitive Attribute : Consumer Operating System

To further exemplify the robustness of our method, we repeat and report all
the experiments discussed in Section 1.5 for another sensitive attribute - op-
erating system of consumer’s smartphone. Previous studies have shown a
strong relationship between mobile operating system and consumer demo-
graphics in the context of mobile marketing (eMarketer, 2013).

In Figure A.3, we report the utility risk trade-off achieved by the proposed
method. We note that the results remain qualitatively similar to our earlier
findings of home address and re-identification threats. Quantitatively, in Fig-
ure A.3, we observe that a data collector can reduce the risk of inference by
10% without any decrease to advertiser’s utility of POI prediction.
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FIGURE A.3: Proposed framework - MAP@k and MAR@k for vary-
ing p, OS inference

In Figure A.4, we report the comparison of the proposed method to it’s
ablations. The qualitative findings remain the same.

In Figure A.4, we compare the proposed method to rule based obfuscation
schemes. We observe that the risk is reduced by ≈ 18% (Figure A.3, p = 0.9, k
= 1) compared to 25.49% when the timestamps are removed. However, this
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Obfuscation
rule

% Decrease
Operating

system risk

% Decrease
Utility

(MAP@1)

% Decrease
Utility

(MAR@1)

Remove
Sleep hours

12.51 11.83 12.69

Remove Sleep
and working

hours
21.84 34.45 23.72

Remove time
stamps

25.49 33.16 32.97

TABLE A.4: Alternative Schemes: Rule-based Obfuscation (Operat-
ing System Inference)
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is achieved with a lesser decrease in the utility ≈ 10% using the proposed
framework when compared to 33%.

Obfuscation
Method

% Decrease
Operating

system risk

% Decrease
Utility

(MAP@1)

% Decrease
Utility

(MAR@1)

GSUP

(Pbr = 0.2)
9.26 7.74 8.31

GSUP

(Pbr = 0.5)
3.11 4.49 3.42

LSUP

(Pbr = 0.2)
14.56 5.31 7.12

LSUP

(Pbr = 0.5)
4.01 -1.65 0.86

TABLE A.5: LSUP and GSUP comparison : OS inference (Green/Red
indicate proposed framework provides a better/worse trade-off)

Finally, in Table A.5, we report the decrease in risk and utility for the
recent suppression models and compare it to the trade-off provided by the
proposed approach. We observe that in all of the four cases, the proposed
method provides a better trade-off.
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Appendix B

Social Determinants of Health

B.1 Location to Activity trajectories

Home and Work activity groups : Given Ti of an individual, we find the
location where a consumer spends the most time from 1 AM - 5 AM on all
days, map this location across Ti to activity home. A similar design to identify
home location has been earlier used in the location data literature to address
privacy concerns (Macha et al., 2019). To assign work, we exclude the home
and locations within a 200m buffer around it (not-home) and proceed in the
following sequence.

1. If the average time spent per day, across the observation period, at a
not-home location is greater than 5 hours, indicating full-time work, we
assign that location as consumer’s work.

2. If the average time spent at a top not-home location is greater than 2
hours, indicating part-time work, we assign this location as work in Ti.
If multiple locations satisfy this condition, indicating multiple part-time
vocations, we assign all of these locations as work.

3. If a consumer spends less than 30 minutes at 3 or more not-home lo-
cations, indicating delivery behaviour, we assign such locations for a
certain day as work to construct Ti.

4. Finally, if we are not able to identify a secondary not-home location where
a consumer spent significant time in, we assume that the consumer does
not have a steady job.

Other activity groups : To map the rest of the locations in Ti to activities,
we identify a point of interest closest to the location using the Google Places
API1. The API returns a list of decorations (refer to second column of Table
3.1) which can help capture an individual’s behavior (gym, amusement_park,hair_care),
their consumption (restaurant, meal_takeaway,cafe) and their leisure activities
(art_gallery, spa, bowling_alley) for each location. We aggregate decorations
with similar semantics to construct thirteen more activities (first column in
Table 3.1) in addition to home and work. To add a temporal context, we ap-
pend each mapped activity with a coarser timestamp of ti

j, ci
j : 12 - 2 AM, 3 -

5 AM, 5 - 7 AM, 7 - 9 AM, 9 - 11 AM, 11 - 2 PM, 2 - 5 PM, 5 - 7 PM, 7 - 9 PM, 9
- 12 PM.

1Google Places https://developers.google.com/places/web-service/supported_types
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B.2 Author Topic Models Primer:

The Author Topic model (ATM), introduced by Rosen-Zvi et al., 2012 is a
probabilistic generative model for documents that extends LDA Steyvers et
al., 2004 to include authorship of documents. In ATM, each author is associ-
ated with a multinomial distribution over topics and each topic, like LDA, is
associated with a multinomial distribution over words. By modeling the in-
terests of authors, ATM enables us to establish what topics an author writes
about, which authors are likely to have written documents similar to an ob-
served document, and which authors produce similar work.

Figure 3.1 illustrates the generative process with a graphical model us-
ing plate notation. Shaded and unshaded circles indicate observed and la-
tent variables respectively. An arrow indicates a conditional dependency be-
tween variables and plates (the boxes in Figure 3.1) indicate repeated sam-
pling with the number of repetitions given by the variable in the bottom. In
ATM, we observe both w and ad, the set of authors of document d. When
generating a document, an author is chosen at random (Uni f orm(ad)) for
each individual word in the document. The author picks a topic from their
multinomial distribution over topics (A× K matrix, denoted by θ), and then
samples a word from the multinomial distribution over words associated
with that topic (W × K matrix, denoted by φ). This process is repeated for
all words in the document until all the documents are created. Formally, the
distributions of the unobserved variables are

P(θ|α) ∼ Dirichlet(α)
P(φ|β) ∼ Dirichlet(β)

P(z|x, θ(x)) ∼ Multinomial(θ(x))

P(w|z, φ(z)) ∼ Multinomial(φ(z))

P(x|ad) ∼ Uni f orm(ad)

(B.1)

Note that the last equation simplifies to x = ad; |ad| = 1 in our lifestyle
identification since each document would only comprise of a single con-
sumer’s day to day activities.
Gibbs Sampling and Estimation : The main objectives of ATM inference are
to estimate the probability of generating w from topic k, φ

(w)
k and the prob-

ability of assigning topic k to a word generated by author a, θ
(a)
k . More gen-

erally, for a given training corpus Dtrain, we need to estimate an approxima-
tion of the posterior distribution P(θ, φ|z, x, Dtrain, α, β), where P(θ, φ|α, β) =
P(θ|α)P(φ|β). Following the approach suggested in Rosen-Zvi et al., 2012,
we first obtain an empirical sample based estimate of P(z, x|Dtrain, α, β) using
Gibbs sampling for 1000 iterations (chaining). Next, we compute posterior
estimates by leveraging the fact that Dirichlet and multinomial are conjugate
distributions (Refer Eq 3.7).

B.3 D.C. Residents

Weekday Lifestyles: Figure B.1 visualizes the five identified weekday lifestyles
and their corresponding activities for D.C. residents. Lifestyle 5 (denoted by
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(A) Lifestyle 1 (B) Lifestyle 2 (C) Lifestyle 3

(D) Lifestyle 4 (E) Lifestyle 5

FIGURE B.1: DC Weekday Lifestyles

wt.5 ) characterizes a late work routine (work over 11 - 2 PM, 2 - 5 PM, 7 - 9
PM), commute via public transportation mornings and evenings (publictrans-
port over 9 - 11 AM , 9 - 11 PM), late night recreation, unhealthy activities,
fitness and necessity shopping (recreation in 9 - 11 PM, fitness 9 - 11 PM, neces-
sityshopping 12 - 3 AM, unhealthy.activities 12 - 3 AM, ). In contrast, lifestyle 1
(wt.1, with similar commute pattern, reveals an early work routine: work 7 -
9 AM, 9 - 11 AM, 11 - 2 PM, 2 - 5 PM, and consumption at restaurants during
evenings and nights (restaurant 2 - 5 PM, 9 - 11 PM). Both lifestyles feature
a steady full-time work routine, and work-fitness balance. Lifestyle wt.4, in
comparison, indicates a part-time job (work 9 - 11 PM, 11 - 2 AM). Lifestyle 3
(wt.3) reveals a mostly at home routine while lifestyle 2 (wt.2) indicates mul-
tiple full-time/part-time jobs.
Weekend Lifestyles: Figure B.2 displays the top ten activities of the four
weekend lifestyles for D.C. residents. Different from Baltimore, we observe
that two lifestyles wwt.1 (work 11 - 2 PM, 2 - 5 PM) and wwt.4 (work 5 - 7
PM) with work activities, all other lifestyles suggest a non-work routine.
Lifestyle wwt.3 characterizes an early start weekend routine with fitness ac-
tivities (fitness 9 - 11 AM) and personal.care afterwards (2 - 5 PM). In con-
trast, lifestyle wwt.2 indicates consumption at restaurants later in the morn-
ing (restaurant 11 - 2 PM), with shopping and religious activities later in the
evening (leisure.shopping, necessity.shopping 5 - 7 PM, religious 9 - 11 PM). Be-
sides work on weekends, individuals in lifestyle wwt.1 regularly consume at
restaurants (restaurant 11 - 2 PM, 9 - 11 PM).
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(A) Lifestyle 1 (B) Lifestyle 2 (C) Lifestyle 3

(D) Lifestyle 4

FIGURE B.2: DC Weekend Lifestyles

Model-free Evidence: Figure B.3 exhibits the histogram of the percent-
age of the 6,114 Baltimore residents with each lifestyle visiting medical facil-
ities. Weekday lifestyles wt.3 and wt.2 have higher (4.14% and 2.92%, Figure
B.3a) than average (2.58%) percentages of individuals visiting medical facili-
ties. In contrast, lifestyle wt.4 has fewer than (1.94 %) average percentage of
hospitalizations. Similarly, Figure B.3c reveals that weekend lifestyles wwt.1
and wwt.2 experience higher percentages of hospitalizations whereas lifestyle
wwt.4 are sixty percent less likely.

In Figures B.3b, B.3d), we present the lift scores of weekend and weekday
lifestyles. The top activities characterizing each lifestyle (Figures B.1, B.2)
and their lift scores suggest that those who participate in personal.care activi-
ties on weekends (wwt.4) or weekdays (wt.4) are less likely (0.63 and 0.75, re-
spectively) to have hospitalizations on average. On the other extreme, those
with either busy, volatile work routines (wt.2) or no work routine (wt.3) on
weekdays, are 1.12 and 1.60 times more likely to have hospitalizations (Fig-
ures B.3b, B.1; and people who either work (wwt.1) or are late starters (wwt.2)
on weekends are 1.29 to 1.32 times more likely to have hospitalizations than
average (Figures B.3d, B.2). Overall, the model-free evidence, similar to Bal-
timore residents, reveals heterogeneous rates of hospitalizations across dif-
ferent lifestyles.

Logit Analysis: Table B.1 (Column 4) indicate that those with wwt.1, wt.3,
wt.2 have significantly higher odds of having a future hospitalization (1.31,
1.61, and 1.49 respectively) than average, after controlling for other social de-
terminants. Similarly, lifestyles wwt.4 and wt.4 have significantly lower odds
than average. These insights are qualitatively consistent with the model free

DocuSign Envelope ID: F8C86E15-F703-4BF7-9D1C-0466EF7A90C2



B.4. Robustness Checks 111

98.06%

97.08%

97.58%

97.43% 95.86%

1.94%2.92% 4.14% 2.42%2.57%0

500

1000

1500

2000

wt.1 wt.2 wt.3 wt.4 wt.5
Daily lifestyle

N
u

m
b

er
 o

f 
p

eo
p

le healthy
hospitalized

(A) Weekday lifestyle Hosp. rate

1.129

0.75
0.936

1.604

0.995

0.0

0.5

1.0

1.5

wt.1 wt.2 wt.3 wt.4 wt.5
Daily Lifestyle

L
if

t

(B) Weekday lifestyle - Hosp. lift

98.03%

96.65%
96.57%

98.35%

3.43%3.35%
1.97%

1.65%0

500

1000

1500

2000

2500

wwt.1 wwt.2 wwt.3 wwt.4
Daily lifestyle

N
u

m
b

er
 o

f 
p

eo
p

le

healthy
hospitalized

(C) Weekend lifestyle Hosp. rate

1.327

0.763
0.638

1.298

0.0

0.5

1.0

wwt.1 wwt.2 wwt.3 wwt.4
Daily lifestyle

L
if

t

(D) Weekend lifestyle - Hosp. lift

FIGURE B.3: (D.C.) Association with Hospitalization : Model free
analysis (hospitalization)

evidence. Similar to Baltimore residents, we do not find any significant as-
sociation between Xaccess

i , Xdemog
i and future hospitalizations indicating that

two individuals who live in the same neighborhood with similar social de-
mographics, access to parks/fitness facilities, but with different lifestyles,
will have different health risks. In Table B.2, we introduce total dwell time
at healthy (fitness, personal care) and unhealthy activities into the regression
and observe that regularity of personal care activities matters (lifestyle wt.4,
wwt.4), instead of the total dwell time. In contrast to Baltimore, we do not
observe that total time spent at unhealthy activities is significantly correlated
to future hospitalization.

B.4 Robustness Checks

Sensitivity in Health Outcome : In Table 3.6 and 3.7, we reported the pre-
dictive performance of alternate definitions of health outcomes hospitaliza-
tion_night, hospitalization_alt . To further showcase the robustness of our find-
ings, we replicate our logit analysis for both Baltimore and D.C. residents
(Tables B.3, B.4). We observe that both the qualitative and quantitative find-
ings remain consistent with our key hospitalization variable hospitalization.
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Dependent variable: hospitalization

(1) (2) (3) (4) (5)

Weekend lifestyle 1 (wwt.1) 0.326∗∗ 0.292∗ 0.275∗ 0.272∗ 0.274∗

(0.150) (0.151) (0.159) (0.164) (0.165)
Weekend lifestyle 2 (wwt.2) 0.426∗∗ 0.425∗∗ 0.358∗ 0.315 0.314

(0.175) (0.176) (0.181) (0.184) (0.185)
Weekend lifestyle 4 (wwt.4) −0.473∗∗ −0.509∗∗ −0.417∗ −0.412∗ −0.410∗

(0.221) (0.221) (0.235) (0.235) (0.237)
Weekday lifestyle 2 (wt.2) 0.294 0.344∗ 0.407∗ 0.401∗ 0.401∗

(0.193) (0.195) (0.198) (0.206) (0.210)
Weekday lifestyle 3 (wt.3) 0.387∗∗ 0.387∗∗ 0.414∗∗ 0.481∗∗ 0.483∗∗

(0.176) (0.177) (0.185) (0.192) (0.193)
Weekday lifestyle 4 (wt.4) −0.359∗ −0.337∗ −0.350∗ −0.327∗ −0.327∗

(0.153) (0.155) (0.166) (0.170) (0.171)
Weekday lifestyle 5 (wt.5) 0.079 0.010 0.215 0.195 0.196

(0.188) (0.191) (0.203) (0.207) (0.218)

Accessibility metrics 7 3 3 3 3

Mobility metrics 7 7 3 3 3

Social Demographics 7 7 7 3 3

Community Controls 7 7 7 7 3

Observations 6,114 6,114 6,114 6,114 6,114
Log Likelihood −484.149 −478.313 −453.994 −429.825 −398.986

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

TABLE B.1: (D.C.) Hospitalization Logit Analysis

Dependent variable: hospitalization

(1) (2) (3)

Weekend lifestyle 1 (wwt.1) 0.273∗ 0.274∗ 0.282∗

(0.167) (0.167) (0.172)
Weekend lifestyle 2 (wwt.2) 0.312 0.314 0.314

(0.186) (0.187) (0.193)
Weekend lifestyle 4 (wwt.4) −0.411∗ −0.411∗ −0.411∗

(0.237) (0.242) (0.243)
Weekday lifestyle 2 (wt.2) 0.402∗ 0.404∗ 0.402∗

(0.211) (0.211) (0.213)
Weekday lifestyle 3 (wt.3) 0.484∗∗ 0.492∗∗ 0.496∗∗

(0.196) (0.198) (0.199)
Weekday lifestyle 4 (wt.4) −0.329∗ −0.327∗ −0.328∗

(0.174) (0.178) (0.177)
Weekday lifestyle 5 (wt.5) 0.201 0.198 0.197

(0.217) (0.218) (0.218)
total_fitness_dwell −0.002

(0.009)
total_personalcare_dwell −0.014

(0.014)
total_unhealthyactivities_dwell 0.003

(0.004)

Other social determinants 3 3 3

Observations 6,114 6,114 6,114
Log Likelihood −378.824 −377.489 −378.868

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

TABLE B.2: (D.C.) Hospitalization : Additional Logit Analysis
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Dependent variable:

hospitalization_alt hospitalization_night

(1) (2) (3) (4) (5) (6) (7) (8)

Weekend lifestyle 1 (wwt.1) 0.220∗ 0.216∗ 0.197∗ 0.170 0.213 0.205 0.101 0.149
(0.118) (0.120) (0.125) (0.130) (0.150) (0.151) (0.158) (0.163)

Weekend lifestyle 2 (wwt.2) −0.938∗∗ −0.920∗∗ −0.818∗∗ −0.784∗ −0.915∗∗ −0.894∗∗ −0.881∗∗ −0.798∗

(0.190) (0.191) (0.197) (0.206) (0.263) (0.264) (0.270) (0.277)
Weekend lifestyle 4 (wwt.4) −0.088 −0.093 −0.004 0.034 −0.018 −0.013 0.094 0.130

(0.116) (0.117) (0.124) (0.129) (0.150) (0.150) (0.158) (0.163)
Weekday lifestyle 1 (wt.1) −0.383∗∗∗ −0.377∗∗∗ −0.315∗∗ −0.288∗∗ −0.273∗ −0.282∗ −0.230 −0.191

(0.121) (0.121) (0.128) (0.134) (0.151) (0.152) (0.159) (0.166)
Weekday lifestyle 2 (wt.2) 0.014 −0.010 −0.292∗∗ −0.287∗∗ 0.093 0.086 −0.189 −0.108

(0.129) (0.130) (0.136) (0.143) (0.162) (0.164) (0.170) (0.179)
Weekday lifestyle 4 (ww.4) −0.377∗∗ −0.356∗∗ −0.311∗∗ −0.292∗ −0.516∗∗ −0.492∗∗ −0.442∗∗ −0.382∗

(0.160) (0.162) (0.168) (0.177) (0.218) (0.219) (0.225) (0.240)
Weekday lifestyle 5 (wt.5) 0.714∗∗∗ 0.716∗∗∗ 0.627∗∗∗ 0.626∗∗∗ 0.966∗∗∗ 0.964∗∗∗ 0.886∗∗∗ 0.884∗∗∗

(0.114) (0.116) (0.122) (0.126) (0.136) (0.138) (0.144) (0.149)

Accessibility metrics 7 3 3 3 7 3 3 3

Mobility metrics 7 7 3 3 7 7 3 3

Social Demographics 7 7 7 3 7 7 7 3

Observations 4,528 4,528 4,528 4,528 4,528 4,528 4,528 4,528
Log Likelihood −1,117.051 −1,108.370 −1,006.016 −923.317 −779.343 −775.067 −700.783 −643.706

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

TABLE B.3: (Baltimore) Logit Analysis : Robustness check for Hospi-
talization

Dependent variable:

hospitalization_alt hospitalization_night

(1) (2) (3) (4) (5) (6) (7) (8)

Weekend lifestyle 1 (wwt.1) 0.226∗∗ 0.233∗∗ 0.241∗∗ 0.197∗ 0.245∗ 0.254∗ 0.282∗ 0.308∗∗

(0.102) (0.103) (0.107) (0.111) (0.142) (0.143) (0.148) (0.155)
Weekend lifestyle 2 (wwt.2) 0.489∗∗ 0.493∗∗ 0.415∗∗ 0.373∗∗ 0.345∗∗ 0.342∗∗ 0.330∗ 0.320∗

(0.124) (0.125) (0.129) (0.132) (0.168) (0.168) (0.173) (0.179)
Weekend lifestyle 4 (wwt.4) −0.429∗∗ −0.437∗∗ −0.420∗∗ −0.413∗∗ −0.456∗∗ −0.462∗∗ −0.384∗ −0.415∗

(0.138) (0.138) (0.146) (0.150) (0.191) (0.192) (0.201) (0.210)
Weekday lifestyle 2 (wt.2) −0.402∗∗ 0.430∗∗ −0.458∗∗ −0.496∗∗ −0.435∗∗ −0.424∗∗ −0.467∗∗ −0.460∗∗

(0.135) (0.137) (0.139) (0.143) (0.185) (0.187) (0.190) (0.197)
Weekday lifestyle 3 (wt.3) 0.279∗∗ 0.267∗∗ 0.332∗∗ 0.381∗∗∗ 0.512∗∗∗ 0.508∗∗∗ 0.541∗∗∗ 0.582∗∗∗

(0.128) (0.128) (0.134) (0.138) (0.167) (0.167) (0.173) (0.181)
Weekday lifestyle 4 (wt.4) −0.370∗∗ −0.373∗∗ −0.408∗∗∗ −0.421∗∗∗ −0.420∗∗∗ −0.412∗∗ −0.422∗∗ −0.445∗∗

(0.105) (0.106) (0.113) (0.117) (0.160) (0.162) (0.171) (0.181)
Weekday lifestyle 5 (wt.5) 0.187 0.188 0.196 0.207 0.205 0.215 0.225 0.211

(0.136) (0.138) (0.146) (0.150) (0.173) (0.175) (0.184) (0.191)

Accessibility metrics 7 3 3 3 7 3 3 3

Mobility metrics 7 7 3 3 7 7 3 3

Social Demographics 7 7 7 3 7 7 7 3

Observations 6,114 6,114 6,114 6,114 6,114 6,114 6,114 6,114
Log Likelihood −1,286.838 −1,283.772 −1,233.189 −1,160.998 −757.339 −755.076 −730.246 −674.633

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

TABLE B.4: (D.C.) Logit Analysis : Robustness check for Hospitaliza-
tion
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